Erosion prediction in a horizontal to vertical elbow by the Euler-Lagrange approach

Santiago Laína,b and Martin Sommerfelda,b

a Martin-Luther-Universität Halle-Wittenberg, Zentrum für Ingenieurwissenschaften, Mechanische Verfahrenstechnik, 06099 Halle (Saale), Germany. www-mvt.iw.uni-halle.de

b Universidad Autonoma de Occidente (UAO), Energetics and Mechanics Department, FMRG, Cali, Colombia.
Contents

- Introduction and motivation
- Summary of the Euler-Lagrange approach
- Summary of the erosion model
- Validation erosion model (Mazumder et al., 2008)
- Computations elbow flow Huber & Sommerfeld (1998)
- Conclusions
Design of a wide variety of engineering processes mostly relies on empirical correlations developed on the basis of numerous experiments.

Example: Pneumatic Conveying

In designing a conveying line the pressure drop is an essential parameter (determines blower capacity and energy requirement).

\[
\Delta p_{\text{tot}} = \left(\lambda_{\text{Single}} + \eta \lambda_{\text{Part}} \right) \frac{L}{D} \frac{\rho}{2} U_{av}^2
\]

The main contribution for the particle phase comes from particle-wall collisions. The “wall friction” is depending on numerous parameters: pipe inclination, pipe diameter, pipe material, particle size and shape, particle material.

Moreover, as processes are running for long times, particle-wall collisions erode the duct walls, which is a severe problem in several systems as pneumatic conveying, particle separation in cyclones or fluidized beds.
Introduction and motivation

- Erosion by solid particles depends on numerous parameters such as:
 - Wall material and structure, particle material, shape and surface structure
 - Kinematic parameters: particle velocity and impact angle
- Two main mechanisms accepted for erosion:
 - Cutting erosion wear (shallow particle impact angles)
 - Deformation erosion wear (close to normal impact angles)
- In the past, due to the importance of the phenomenon, many erosion models have been developed based on experiments, but the majority are specific for the studied case.
- However, for predicting erosion, the flow and particle fields need to be known as particle kinematic variables are essential. Therefore, in this study Euler–Lagrange approach is chosen because it is the natural frame to describe essential micro processes happening at the particle scale
- This contribution highlights the influence of wall roughness and inter-particle collisions as well as particle mass loading on predicted erosion rates on an elbow flow configuration.
The fluid flow is calculated by solving the Reynolds-averaged conservation equations (steady or unsteady) by accounting for the influence of the particles (source terms).

Turbulence models:
- k-ε turbulence model
- Reynolds-stress model

The Lagrangian approach relies on tracking a large number of representative particles (point-mass) through the flow field accounting for rotation and all relevant forces like:
- drag force
- gravity/buoyancy
- pressure and added mass
- slip/shear lift
- slip/rotation lift
- torque on the particle

Plus elementary processes:
- particle-turbulence interaction
- particle-rough wall collision
- inter-particle collisions

Particle properties and source terms result from ensemble averaging for each control volume.
Modelling particle-wall collisions

Particle-rough wall collision: momentum equations + Coulomb’s law of friction
Sommerfeld & Huber (1999)

\[p(\gamma) = \frac{1}{\sqrt{2\pi \Delta \gamma^2}} \exp\left(\frac{-\gamma^2}{2 \Delta \gamma^2}\right) \]

Dependence of roughness angle \(\Delta \gamma\) on particle size (measurements)

\[\alpha'_1 = \alpha_1 + \Delta \gamma \xi \]

PDF

Normal distribution
Effective distribution
Simulated distribution

\(\alpha_1 = 2.5\)
Modelling inter-particle collisions

- **Stochastic inter-particle collision model** (Sommerfeld, 2001)

 Based on the fictitious collision partner concept, generated at each time step of particle trajectory computation

 Properties of fictitious particle sampled from local distribution functions

 - Particle diameter
 - Particle velocities

- solution of the impulse equations
- Coulomb’s law of friction
- oblique inelastic collision (Hard Sphere Model)

Correlation of fluctuating velocities of colliding particles respected

\[
R(St_K) = \exp\left(-\frac{\alpha St_K^2}{1+\gamma St_K^\beta}\right)
\]

Laín et al. (2010)

\[
\alpha = 0.019, \beta = 1.725, \gamma = 0.044 \quad St_K = \frac{\tau_p}{\tau_K}
\]
Erosion model Oka et al. (2005)

“... propose predictive equations for erosion damage caused by solid particle impact that can be applied to many types of metallic materials under various conditions involving impact angles, velocity, size and properties of the particles”

\[E(\alpha) = g(\alpha) E_{90} \]

\[g(\alpha) = (\sin \alpha)^{n_1} [1 + Hv (1 - \sin \alpha)]^{n_2} \]

\[n_1 = s_1 (Hv)^{q_1} \]

\[n_2 = s_2 (Hv)^{q_2} \]

Hv: Vickers Hardness
Erosion model Oka et al. (2005)

\[E(\alpha) = g(\alpha) E_{90} \quad E_{90} = K(\alpha \ Hv)^{k_1 b} \left(\frac{u_p}{u_{ref}} \right)^{k_2} \left(\frac{D_p}{D_{ref}} \right)^{k_3} \]

\(K, \ k_1 \ & \ k_3 \) : constants depending on particle properties

\(k_2 = r(\ Hv) \) : depends on wall material and particle properties

\(a, b \) : factors related to the behaviour of load-relaxation ratio of wall material

\(E(\alpha) \) gives erosion damage in \(\text{mm}^3/\text{kg} \) which is converted to penetration ratio by:

\[PR_S = 10^{-9} \ \frac{E_S(\alpha)}{A_S} [\text{m/ kg}] \quad A_S : \text{surface area} \]
Validation erosion model

Mazumder et al. (2008) experiments (sand & aluminium)

\[H_v = 1.049 \text{ GPa}; \quad D_p = 182 \, \mu m \]

\[\begin{array}{cccccccc}
K & k_1 & k_2 & k_3 & u_{\text{ref}} (\text{m/s}) & D_{\text{ref}} (\mu m) & n_1 & n_2 \\
65 & -0.12 & 2.3H_v^{0.038} & 0.19 & 104 & 326 & 0.71H_v^{0.14} & 2.4H_v^{-0.94}
\end{array} \]

\[g(\alpha) [-] \]

- Case Mazumder et al. (2008)
- Case Huber & Sommerfeld (1998)

\[\alpha [\text{degree}] \]

Flow direction and erosion region analysis.
Validation erosion model

Mazumder et al. (2008) experiments (sand & aluminium)

\[Hv = 1.049 \text{ GPa}; \ D_p = 182 \mu m \]

One-way coupling computations
Pipe bend flow Huber & Sommerfeld (1998)

Base case
- Pipe diameter: 150 mm
- Horizontal pipe length: 5 m
- Bend radius: 2.54 x 150 mm
- Vertical pipe length: 5 m
- Conveying velocity: 27 m/s
- Glass beads: 40 μm mean
- Mass loading: 0.3

* Three-dimensional computations
* k-ε turbulence model
* Block-structured grid with 25 blocks
* 568,000 hexahedral control volumes
* Full coupling Euler/Lagrange
* Inter-particle collisions
* Wall roughness

Tracking of 1,000,000 parcels in 7 diameter classes
Pipe bend flow Huber & Sommerfeld (1998)

- Pressure drop of the pipe system
- Particle rope disintegration
- Secondary flow effects
- Inertial particle separation
- Rope formation
- Secondary flow modification
- Gravitational settling
- Turbulent dispersion

25 blocks
568,000 CV`s

$2.54 \cdot D_{\text{pipe}}$

27 m/s

$D_{\text{pipe}} = 0.15 \text{ m}$

Tracking of 1,000,000 parcels
Pipe bend flow Huber & Sommerfeld (1998)

\[D = 0.15 \text{ m} \]

Particle velocity

Particle mass flux

Particle diameter

Validation versus experimental measurements
Pipe bend flow Huber & Sommerfeld (1998)

Two-way

$D = 0.15 \text{ m}$

Four-way
Pipe bend flow Huber & Sommerfeld (1998)

Particle-wall collision frequency

Two-way

Four-way
Pipe bend flow Huber & Sommerfeld (1998)

Erosion computation, $H_v = 1.96$ GPa

<table>
<thead>
<tr>
<th>K</th>
<th>k_1</th>
<th>k_2</th>
<th>k_3</th>
<th>u_{ref} (m/s)</th>
<th>D_{ref} (µm)</th>
<th>n_1</th>
<th>n_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>-0.16</td>
<td>2.1</td>
<td>0.19</td>
<td>100</td>
<td>200</td>
<td>$2.8H_v^{0.41}$</td>
<td>$2.6H_v^{-1.46}$</td>
</tr>
</tbody>
</table>

Two-way

Four-way
Pipe bend flow Huber & Sommerfeld (1998)

Penetration Ratio [m/kg]

Bend Angle [degree]

D_p = 40 µm

D_p = 135 µm
Pipe bend flow Huber & Sommerfeld (1998)

Comparison between mass loadings $\eta = 0.3, 0.6$

$\eta = 0.6$
Conclusions

- The Euler/Lagrange approach has been used for calculating dispersed confined particle-laden flows in connection with wear estimation.
 - Realistic modelling of elementary processes
 - Consideration of particle size distribution

- Wall roughness decreases PR due to its effect on particle re-dispersion
- Also, friction decreases PR due to lower particle velocity at impact
- Size distribution increases PR regarding mono-disperse particles due to higher erosion damage produced by the highest diameters in the size distribution
- Inter-particle collisions reduce PR regarding two-way coupling even though particle-wall collision frequency increases. This effect is due to the combined effect of particle velocity and angle at impact.
- Higher particle mass loading yields also lower values of PR as a consequence of increasing inter-particle collisions. Particles near the wall “shield” it from direct impacts from incoming particles.