Direct Quadrature-based Sectional Method of Moments coupled to realistic evaporation models

Advanced Hybrid Model for Simulating Complex Polydisperse Sprays
Spray application

Dense

Injection nozzle

Primary atomization

Secondary droplet breakup

Droplet-droplet interactions

Evaporation

Dilute
Simulation emphasis

- **Major foci**
 - Atomization of liquid fuel
 - Momentum transfer between phases
 - Droplet-droplet/-turbulence interaction
 - Heat and mass transfer
 - Chemical reactions

- **Major challenges**
 - Small time and size scales
 - Large amount of droplets
 - Varying spray regime

- **Major aspects**
 - Practicable for industrial applications
 - Simulation on a microscopic level is prohibitive
 - Modeling is based on a statistical level of description
Outline

1 Spray modeling
Outline

1 Spray modeling

2 Method of Moments
 - DQbSMoM
 - Operator splitting

3 Evaporation modeling
 - Equilibrium and non-equilibrium formulation
 - Models under investigation

4 Spray simulation
 - Experimental and numerical configuration
 - Results

5 Summary and outlook
Outline

1 Spray modeling
2 Method of Moments
 - DQbSMoM
 - Operator splitting
3 Evaporation modeling
 - Equilibrium and non-equilibrium formulation
 - Models under investigation
Outline

1. Spray modeling

2. Method of Moments
 - DQbSMoM
 - Operator splitting

3. Evaporation modeling
 - Equilibrium and non-equilibrium formulation
 - Models under investigation

4. Spray simulation
 - Experimental and numerical configuration
 - Results
Outline

1. Spray modeling
2. Method of Moments
 - DQbSMoM
 - Operator splitting
3. Evaporation modeling
 - Equilibrium and non-equilibrium formulation
 - Models under investigation
4. Spray simulation
 - Experimental and numerical configuration
 - Results
5. Summary and outlook
Outline

1 Spray modeling

2 Method of Moments
 - DQbSMoM
 - Operator splitting

3 Evaporation modeling
 - Equilibrium and non-equilibrium formulation
 - Models under investigation

4 Spray simulation
 - Experimental and numerical configuration
 - Results

5 Summary and Outlook
Spray modeling principles

- Kinetic spray equation of distribution function $f(x, t; u, \phi, T)$

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial x_i} (u_i f) + \frac{\partial}{\partial u_i} (F_i f) + \frac{\partial}{\partial \phi} (R_\phi f) + \frac{\partial}{\partial T} (\theta f) = \Gamma$$

- Physical aspects
 - $\frac{\partial f}{\partial t}$ Transient term
 - $\frac{\partial}{\partial x_i} (u_i f)$ Convective term
 - $\frac{\partial}{\partial u_i} (F_i f)$ Momentum transfer
 - $\frac{\partial}{\partial \phi} (R_\phi f)$ Mass transfer
 - $\frac{\partial}{\partial T} (\theta f)$ Heat transfer
 - Γ Droplet-droplet interaction

- Solving approaches

<table>
<thead>
<tr>
<th></th>
<th>DNS</th>
<th>LES</th>
<th>RANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stochastic</td>
<td>Stochastic Lagrangian methods</td>
<td>Eulerian moment methods</td>
<td></td>
</tr>
<tr>
<td>Lagrangian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microscopic</td>
<td>Microscopic models</td>
<td>Mesoscopic models</td>
<td>Macroscopic models</td>
</tr>
<tr>
<td>models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesoscopic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroscopic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>models</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lagrangian and Eulerian methods

- **Stochastic Lagrangian Methods**
 - Robust, accurate and well established
 - RANS/LES simulations with lower parallelization of solver
 - Requiring sufficient amount of parcels to avoid statistical noise
 - High computational cost for highly unsteady simulations with fine mesh
 - Hardly achievable optimal parallelization

 Tendency: LES and highly parallelized simulations

- **Eulerian Moment Methods**
 - Equations of both phases share same structure
 - Straightforward phase coupling
 - Achievable optimal parallelization
 - Under research and majorly used for academic applications
 - Variety of approaches

 Tendency: Growing awareness and interest
Assumptions of MoM

- Approximation of NDF by weighted Dirac-delta functions

\[f(x, t; u, \phi, T) \approx \sum_{n=1}^{N} w_n \delta(\phi - \phi(x, t)) \delta(u - u_n(x, t)) \delta(T - T_n(x, t)) \] (2)

- Calculation of moments

\[m_{qlmp\theta}(x, t; u, \phi, T) = \sum_{n=1}^{N} w_n \phi_n^q u_1^l_n u_2^m_n u_3^p_n T_n^\theta \] (3)

- Moments of diameter \((q = d)\)

- \(m_0^d \) amount of droplets
- \(m_1^d \) \(\sim \) mean diameter
- \(m_2^d \) \(\sim \) surface
- \(m_3^d \) \(\sim \) volume/mass
Assumptions of DQbSMoM

- Splitting of \(f(x, t; u, \phi, T) \) into \(k \) sections

\[
f(x, t; u, \phi, T) = \sum_{k=1}^{N_s} f_k(x, t; u, \phi, T)
\]

(4)

- Utilization of indicator function

\[
f_k(x, t; u, \phi, T) = \begin{cases}
 f_k(x, t; u, \phi, T) & \text{if } \phi \in [\phi_{k-1}, \phi_k) \\
 0 & \text{otherwise}
\end{cases}
\]

(5)

- Approximation of NDF over each section \(k \)

\[
f_k(x; t, u, \phi, T) \approx \sum_{n=1}^{N} w_{k,n} \delta(d - d_{k,n}) \delta(u - u_{k,n}) \delta(T - T_{k,n})
\]

(6)
Concept of the DQbSMoM

![Graph showing the number density function of droplet diameter.](image)
Concept of the DQbSMoM
Closure strategy

- General approach
 - Insertion of Dirac-delta approximation
 - Application of moment transform
 - Choice of $6 \cdot N$ independent, non-singular moments
 - Linear system is solved using modified standard DQMoM

- Standard DQMoM approach
 - Outcome is a set of 4 Eulerian transport equations
 - Consideration of physical phenomena by source terms on RHS

- DQbSMoM approach
 - Application of operator splitting strategy
 - Separate handling of terms on LHS

- Framework for this method
 - Based on incompressible Finite Volume Method
 - Implicit time discretisation
Operator splitting

Splitting Eq. (1) according to $\frac{\partial f}{\partial t} =$

<table>
<thead>
<tr>
<th>Physical space</th>
<th>Phase space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-fluid method</td>
<td>EMSM and SM</td>
</tr>
<tr>
<td>$- \frac{\partial}{\partial x_i} (u_i f) - \frac{\partial}{\partial u_i} (F_i f)$</td>
<td>$- \frac{\partial}{\partial \phi} (R_\phi f) - \frac{\partial}{\partial T} (\theta f)$</td>
</tr>
</tbody>
</table>

Two-step splitting strategy
- Phase space transport during $\Delta t/2$
- Physical space transport during Δt
- Phase space transport during $\Delta t/2$

Solving approaches
- EMSM/SM is consistent with evaporation models
- Coalescence is neglected ($\Gamma = 0$)
- Formulation is equivalent to splitting of source terms
Coupling with multi-fluid method

- Basics of coupling approach
 - Inserting volume fraction results in multi-fluid system
 - RHS includes drag term, turbulence diffusion and gravity effects
 - Equivalent to multi-fluid system with $N_s \cdot N$ phases
 - Straightforward coupling, because equations share same structure

- Fundamental assumptions
 - Based on density based averaging strategy
 - Modeling approaches are needed for closure
 - Turbulence of disperse phase is derived by gas phase

- Characteristics of the coupling approach
 - Consideration of $\phi = \nu$
 - Additional transport equations for diameter and temperature abscissae
 - Mono-kinetic assumption
EMS/M in consistency with evaporation

- Features of EMSM/SM
 - Prediction of flux of evaporating droplets at zero size
 - Prediction of moment flux ψ at section boundaries
 - Consideration of $\phi = s$

- Calculation algorithm
 - Approximate NDF and calculate moment vector M_{ϕ_k}
 - Calculate moment fluxes ψ at each section boundary
 - Modify moment vector and calculate quadrature points

 $M_{\phi_k}^{*} = M_{\phi_k} - \psi_{k-1} + \psi_k$

 - Shift NDF using general DQMOM approach

 $\phi_{k,n}(t + \Delta t) = R_{\phi} \Delta t + \phi_{k,n}(t)$
 $T_{k,n}(t + \Delta t) = \theta \Delta t + T_{k,n}(t)$

- Calculate change of vapor mass fraction
Outline

1. Spray modeling
2. Method of Moments
 - DQbSMoM
 - Operator splitting
3. Evaporation modeling
 - Equilibrium and non-equilibrium formulation
 - Models under investigation
4. Spray simulation
 - Experimental and numerical configuration
 - Results
5. Summary and outlook
Equilibrium and non-equilibrium formulation

- **Equilibrium formulation of vapor mole at droplets’ surface**

 \[X_{s(eq)} = \frac{p_{sat}}{p_g} = \frac{p_{atm}}{p_g} \exp \left(\frac{h_{vap} W_d}{R} \left(\frac{1}{T_{boil}} - \frac{1}{T_d} \right) \right) \]
 \((7) \)

- **Non-equilibrium formulation**

 \[X_{s(neq)} = X_{s(eq)} - \left(\frac{2 L_k}{d} \right) \beta \]
 \((8) \)

- **Advantages of non-equilibrium evaporation models**
 - High temperature difference
 - Minor droplet diameter
 - High relative velocity

\[L_k = \frac{\mu_g \sqrt{2 \pi T_d R/W_d}}{\alpha_e Sc_g p_g} \]
\[\beta = - \left(\frac{3 Pr_g \tau_d}{2} \right) \frac{\dot{m}_d}{m_d} \]
Models under investigation

- Equilibrium model by Abramzon and Sirignano (1989)
- Non-equilibrium model by Langmuir and Knudsen (1978)
- Evaporation rate and transient droplet temperature

\[
\frac{dm_d}{dt} = - \frac{Sh}{3 \text{ } Sc_g} \left(\frac{m_d}{\tau_d} \right) H_M \tag{9}
\]

\[
\frac{dT_d}{dt} = \frac{f_d Nu}{3 \text{ } Pr_g} \left(\frac{c_{p,g}}{c_{p,v}} \right) \left(T_g - T_d \right) + \left(\frac{h_{\text{vap}}}{c_{p,d}} \right) \frac{\dot{m}_d}{m_d} \tag{10}
\]

- Varying formulation for H_M and f_d
- Sherwood and Nusselt number

\[
Sh = 2 + 0.522 \text{ } Re_d^{\frac{1}{2}} \text{ } Sc_g^{\frac{1}{3}} \quad Nu = 2 + 0.522 \text{ } Re_d^{\frac{1}{2}} \text{ } Pr_g^{\frac{1}{3}} \tag{11}
\]

- Reference values T_{ref} and Y_{ref} according $^{1/3}$-rule
Outline

1. Spray modeling

2. Method of Moments
 - DQbSMoM
 - Operator splitting

3. Evaporation modeling
 - Equilibrium and non-equilibrium formulation
 - Models under investigation

4. Spray simulation
 - Experimental and numerical configuration
 - Results

5. Summary and outlook
Experimental configuration

- Non-reacting acetone spray
- Jet surrounded by a pilot and a coflow
- \(T_g = T_d = 300 \text{ K}, \ p_g = 0.1 \text{ MPa} \)
- Ultrasonic nebulizer for spray
- Usage of Laser Doppler Velocimetry and Phase Doppler Particle Anemometry
- 7 measurement positions above the nozzle exit \((x/D = 0.3; \ldots; 30)\)

<table>
<thead>
<tr>
<th></th>
<th>(u_{jet})</th>
<th>(u_{pilot}, u_{coflow})</th>
<th>(\dot{m}_{jet})</th>
<th>(\dot{m}_d)</th>
<th>(\dot{m}_{d(l)})</th>
<th>(\dot{m}_{d(g)})</th>
<th>(Re)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1</td>
<td>24.0</td>
<td>4.5</td>
<td>150.0</td>
<td>75.0</td>
<td>22.1</td>
<td>52.9</td>
<td>24,288</td>
</tr>
<tr>
<td>SP6</td>
<td>36.0</td>
<td>4.5</td>
<td>225.0</td>
<td>45.0</td>
<td>28.5</td>
<td>16.5</td>
<td>27,937</td>
</tr>
</tbody>
</table>
Numerical configuration

- Turbulence of gas phase is described with modified $k-\varepsilon$ model
- Approx. lognormal size distribution
- *slip wall* condition for cylinders’ surface
- Inlet is located at $x/D = 0.3$
- Smallest cells have a length of 0.5 mm
- 5 subiterations for evaporation model
- Polynomials for thermodynamic variables

<table>
<thead>
<tr>
<th>Radius</th>
<th>Height</th>
<th>Δt</th>
<th>CV number</th>
<th>Points</th>
<th>Sections k</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>mm</td>
<td>s</td>
<td>$\sim 350,000$</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>SP1/SP6</td>
<td>50</td>
<td>1.5×10^{-5}</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Results

Droplet mean surface diameter

Droplet Sauter mean diameter
Results

Droplet concentration

Droplet flux

Volume flux \([\text{m}^3/(\text{m}^2 \text{s})]\)
Results

Mean axial velocity

Mean radial velocity

SP1 SP6

x/D = 30

x/D = 25

x/D = 20

x/D = 15

x/D = 10

SP1 SP6

x/D = 30

x/D = 25

x/D = 20

x/D = 15

x/D = 10

SP1 SP6
Outline

1. Spray modeling
2. Method of Moments
 - DQbSMoM
 - Operator splitting
3. Evaporation modeling
 - Equilibrium and non-equilibrium formulation
 - Models under investigation
4. Spray simulation
 - Experimental and numerical configuration
 - Results
5. Summary and outlook
Summary and outlook

- Modeling approach
 - Modeling multiphase flows
 - Method of Moments
 - Operator splitting approach
 - Evaporation modeling

- Results for SP1 and SP6
 - Experimental and numerical configuration
 - Results for equilibrium and non-equilibrium model

- Coupling to a combustion model
 - Single droplet combustion experiments
 - Spray combustion experiments

- Improvements of turbulence modeling

...
Direct Quadrature-based Sectional Method of Moments coupled to realistic evaporation models

Advanced Hybrid Model for Simulating Complex Polydisperse Sprays