

Transport of solid-liquid suspensions in wellbore drilling: multiscale modeling and experimental validations

Institute of Applied Mechanics

Roger Aragall, Fan Yu, Matthias Thurmann, Gunther Brenner

10.09.2015

Motivation

- Deep geothermal drilling
 - Construction of wellbores up to 10.000 meter deep
 - Cost reduction 3.000 €/Meter
- Hole-cleaning challenges
 - Variable operating conditions and geometries
 - Complex rheology
 - Multiphase flow (non-Stokesian suspensions)

Understanding and modeling of interactions between dispersed (solid) and continuous (liquid) phases are still unclear

Roger Aragall Tersa Institut für Technische Mechanik

Multiscale approach

Modeling at system-level

ID-Drift-flux Model (unsteady): Formulation

$$\frac{\partial A\rho_m}{\partial t} + \frac{\partial A\rho_m V_m}{\partial s} = 0$$

- Momentum (mixture) $\frac{\partial A \rho_m V_m}{\partial t} + \frac{\partial A \rho_m V_m^2}{\partial s} = -A \frac{\partial p}{\partial s} + A \rho_m g \cos \phi A \Delta p_v$
- Continuity (dispersed phase) $rac{\partial
 ho_d lpha_d}{\partial t} + rac{\partial
 ho_d lpha_d V_d}{\partial s} = 0$
 - V_m average velocity of the mixture
 - V_d average velocity of the dispersed phase
 - p pressure

Modeling at system-level

- ID-Drift-flux Model: Closures
- $\Delta p_v = \frac{L}{2A} f \rho_m V_m |V_m|$ - Pressure loss $Re_{eff0} = \frac{D_{eff}^{n\prime} U^{2-n\prime} \rho}{\Omega^{(n'-1)} W'}$ Pilehvari & Serth (2009) $f_L = 64/\text{Re}_{\text{eff}}$ Laminar $f_T^{-0.5} = -4 \log_{10} A$ Turbulent $D_{eff} = \frac{\omega' D_0^{(3n'+1)/n'}}{(D_I + D_0) D_h^{\frac{n'+1}{n'}} (R')^{1/n'}}$ power law fluid $A = \left\{ \left(0.27 \ \varepsilon / D_{eff} \right) + 1.26^{\left(n'\right)^{-1.2}} / \left[\operatorname{Re}_{eff} f_T^{(1-n'/2)} \right]^{(n')^{-0.75}} \right\}$ - disperse Phase $V_d = C_0 V_m + V_{di}$ Fluidgeschwindigkeit $rac{\partial
 ho_d lpha_d}{\partial t} + rac{\partial
 ho_d lpha_d V_m C_0}{\partial s} = -rac{lpha_d
 ho_d V_{dj}}{\partial s}$ v,(;;) $v_{\rm o}(r)$ **v**_p(**r**)⁴ Empirical parameters $\begin{cases} C_0 & \text{Distribution Coefficient} \\ V_{dj} & \text{Drift Flux Velocity} \end{cases}$ Partikel Konzentration C₀ ≈ 1

Experimental benchmark

MEASURING EQUIPMENT

- Laser system: Solo PIV double-pulsed Nd:YAG, 30 mJ at 532 nm
- Camera: PCO sensicam qe, 1.376 x 1.040 pixels and 12-bit resolution
- Lens: Nikon Micro-NIKKOR 55 mm

Roger Aragall Tersa Institut für Technische Mechanik

Aragall, R., Mulchandani, V., & Brenner, G. (2015). *IJMF*, *69*, 63-80.

7

Experimental results - monodisperse flow: experiments #7 and #10

Roger Aragall Tersa Institut für Technische Mechanik

Institut für Technische Mechanik

Experimental results – bidisperse flow: experiments #46 and #62

Roger Aragall Tersa Institut für Technische Mechanik

14th Workshop on Two-Phase Flow Predictions Halle (Saale), Germany, 7.-10. September 2015

Modeling at meso- level – CFD-DEM coupling

 ho_{f} number of particles per unit volume n f_i and local mean value of the force on particle *i* by its surrounding fluid

torque acting on particle *i* by particle *j* particle-fluid, elastic and viscous forces tangential force and rolling friction torque

CFDEM solver – cfdemSolverPiso

Solver for unresolved CFD-DEM coupling. OpenFOAM Piso algorithm for CFD and LIGGGHTS for DEM.

t. r

Interfacial models: several empirical models for drag force (Schiller-Naumann, Gidaspow, Di Felice) Lift force with Saffman-Mei model and virtual mass force with constant coefficients.

Τ,

Modeling at meso-level

Time: 0.00

Roger Aragall Tersa Institut für Technische Mechanik 14th Workshop on Two-Phase Flow Predictions Halle (Saale), Germany, 7.-10. September 2015

11

Institut für Technische Mechanik

Comparison – monodisperse flow: experiment #15

Comparison – bidisperse flow: experiment #6

Roger Aragall Tersa Institut für Technische Mechanik

Comparison – bidisperse flow: experiment #46

Analysis of the effect of eccentricity on vertical cuttings transport

- Fixed parameters:
 - **Length** = 1,000 mm
 - **D**_o = 250 mm **D**_i = 125 mm
- Varied parameters:

•	Eccentricity	= concentric,	25	and	50%
---	--------------	---------------	----	-----	-----

Basic Experiment	Particle Diameter d_p (mm)	Fluid average velocity u_l (m/s)	Dynamic Viscosity $\eta \text{ (mPa·s)}$	Particle Volume Fraction ϕ (%)
S1	4	0.7	50	5
S2	4	0.6	75	2.5
S3	6	0.7	50	1
S4	5	0.5	30	1

Output parameters:

$$C_0 = \frac{\overline{\varepsilon_d j_m}}{E_d V_m} \qquad V_{dj} = \frac{\overline{\varepsilon_d v_{dj}}}{E_d}$$

- Experimental design:
 - 60 seconds to reach stability
 - 20 last seconds saved for averaging

Roger Aragall Tersa Institut für Technische Mechanik

Institut für Technische Mechanik

14th Workshop on Two-Phase Flow Predictions Halle (Saale), Germany, 7.-10. September 2015

Flow fields and particle distributions

Roger Aragall Tersa Institut für Technische Mechanik

14th Workshop on Two-Phase Flow Predictions Halle (Saale), Germany, 7.-10. September 2015

Effect of Velocity and Concentration Profile

Drift -flux parameters

 C_{0}

Distribution coefficient

$$=\frac{\overline{\varepsilon_{d} j_{m}}}{E_{d} V_{m}} \qquad \overline{\varepsilon_{d} j_{m}} = \frac{1}{A} \int_{0}^{A} \varepsilon_{d} j_{m} dA = \frac{1}{A} \int_{0}^{A} \varepsilon_{d} (\varepsilon_{d} v_{d} + \varepsilon_{f} v_{f}) dA =$$
$$= \frac{1}{A} \int_{0}^{A} \varepsilon_{d} (\varepsilon_{d} v_{d} + (1 - \varepsilon_{d}) v_{f}) dA$$

Drift flux velocity

$$V_{dj} = \frac{\overline{\mathcal{E}_{d} V_{dj}}}{E_{d}} \qquad \overline{\mathcal{E}_{d} V_{dj}} = \frac{1}{A} \int_{0}^{A} \mathcal{E}_{d} V_{dj} dA = \frac{1}{A} \int_{0}^{A} \mathcal{E}_{d} (V_{d} (\mathcal{E}_{d} V_{d} + \mathcal{E}_{f} V_{f})) dA =$$
$$= \frac{1}{A} \int_{0}^{A} \mathcal{E}_{d} (V_{d} (\mathcal{E}_{d} V_{d} + (1 - \mathcal{E}_{d}) V_{f})) dA$$

Roger Aragall Tersa Institut für Technische Mechanik

Distribution coefficients and drift-flux velocities

Roger Aragall Tersa Institut für Technische Mechanik

C₀ (m/s)

14th Workshop on Two-Phase Flow Predictions Halle (Saale), Germany, 7.-10. September 2015

Distribution coefficients and drift-flux velocities

Roger Aragall Tersa Institut für Technische Mechanik

Conclusions and Outlook

- Conclusions
 - System scale models require information from lower scales
 - Numerical simulations are becoming a real alternative to full scale physical experiments
 - Detailed physical experiments focused on fundamental phenomena are still required for the validation phase
- Outlook
 - Development of correlations to predict superficial velocity of the cuttings as a function of operating conditions
 - Further experiments concentrated on pseudoplastic fluids
 - Development of the CFDEM library to include pseudoplastic rheology

Thank you for your attention

Forschungsverbund Geothermie und Hochleistungsbohrtechnik

Niedersächsisches Ministerium für Wissenschaft und Kultur

Roger Aragall Tersa Institut für Technische Mechanik

