

Fluid-Solid-Interaction Simulations with the WCSPH Method in the Software Package YADE

Sebastian Borrmann, Anton Gladkyy, Rüdiger Schwarze

14th Workshop on Two-Phase Flow Predictions Halle (Saale)

- Collaborative Research Center 799
 TRIP-Matrix-Composites
- Design of tough and transformation toughened composite materials and structures based on Fe-ZrO₂

- Several manufacturing branches, i.e. infiltration and powder metallurgy
- Flamecasting as application route
- Interaction of steel-droplets with ceramic particles expected

Introduction Flamecasting

- Process divided in 4 Phases
 - Melting of composite
 - Particle, droplet flight
 - Wall impact
 - Solidification

Fig. Gas jet behind flamecasting nozzle

- Macroscale CFD models used for melting, flight and solidification
- More detailed simulations carried out on lower scale with Smoothed Particle Hydrodynamics (SPH) and Discrete Element Method (DEM)
 - Impact simulations (detailed surface modeling necessary)
 - Opportunity also for solidification and melting on mesoscale

SPH Equation and Force Discretization

- SPH: Particle based method for fluid simulations
 - Artificial particles as discrete calculation points
 - Completely meshfree approach

Basic SPH-equation

$$\langle A(\boldsymbol{x}_i)\rangle = \sum_{j=1}^N \frac{m_j}{\rho_j} A(\boldsymbol{x}_j) W(\boldsymbol{r}_{ij}, h)$$

Forces on RHS of NSG (Monaghan, 1988; Morris, 1994)

$$\left(\frac{1}{\rho_i}\nabla p_i\right) = \sum_{j=1}^N m_j \left(\frac{p_j}{\rho_j^2} + \frac{p_i}{\rho_i^2}\right)\nabla W_{ij}$$

$$\left| \left(\frac{1}{\rho_i} \nabla \cdot \mu_i \nabla \right) \boldsymbol{u}_i \right| = \sum_{j=1}^N \frac{m_j (\mu_i + \mu_j) \boldsymbol{u}_{ij}}{\rho_i \rho_j} \left(\frac{1}{r_{ij}} \frac{\partial W_{ij}}{\partial r_i} \right)$$

Density calculation: summation density approach

$$\rho_i = \sum_{j=1}^N m_j W_{ij}$$

- Leads to wrong density at free surfaces
- Re-allignment of SPH-Particles in initialisation and relaxing pre-calculation to fix issue

Pressure calculation with linearised Tait's equation (*Batchelor, 1967*)

$$p_i = c_0^2 (\rho_i - \rho_0)$$

Lucy kernel function for particle interaction weight (Lucy, 1977)

$$W_{ij} = \alpha_d \begin{cases} \left(1 + 3\frac{r_{ij}}{h}\right) \left(1 - \frac{r_{ij}}{h}\right)^3 & \frac{r_{ij}}{h} \le 1\\ 0 & \frac{r_{ij}}{h} > 1 \end{cases}$$

Boundary Handling

Free Surface

- Alignement of SPH particles
- Enlargement of particle quantity → density correction

Wall Boundary

- Fixed wall particles
- Kernel interaction

Fig. Initial particle distribution

Fig. Relaxing particle distribution

Fig. Wall boundary condition

Fig. Flowchart of SPH calculation

Impact – Introduction

- Simulation case: Impact of a 2D cylinder on a free liquid surface
- Process divided in three different phases
 - I. Free fall
 - II. Impact and cavity formation
 - III. Rebound and cavity collapse

Fig. Three phases of impact process, divided by physical effects

Impact Geometry

Fig. Qualitative comparison of SPH simulation (right) with photography of experimental investigation (left) (Greenhow and Lin, 1983) - Impact with ligament and droplet formation in Phase II.

Fig. Qualitative comparison of SPH simulation (right) with photography of experimental investigation (left) (Greenhow and Lin, 1983) - Cavity formation in Phase II

Fig. Qualitative comparison of SPH simulation (right) with photography of experimental investigation (left) (Greenhow and Lin, 1983) - Cavity Closure in Phase III

X KIE.

Fig. Qualitative comparison of SPH simulation (right) with photography of experimental investigation (left) (Greenhow and Lin, 1983) - Worthington Jet formation in Phase III.

Vid. Density-wave propagation during the impact process.

Fig. Quantitative comparison of two WCSPH simulation implementations with experimental data (Greenhow and Lin, 1983) and simulations with Boundary Elemental Method (BEM) (Sun and Faltinsen, 2007).

Fig. Comparison of five different particle sizes and numbers. Res 1: 1065 p., Res 2: 3881 p., Res 3: 14769 p., Res 4: 57577 p., Res 5: 227347 p.

Conclusion and Outlook

What is implemented

- WCSPH method
- Fixed wall particles
- Adjusted neighbour search algorithm
- Lucy kernel function

What needs to be done

- Smoother rigid body geometry
- Overcome tensile instability
- Surface detection, surface tension
- Density contrast interface handling
- DEM-SPH coupling

- German Research Foundation
- CRC 799 TRIP-Matrix-Composite
- Prof. Dr.-Ing. habil. Rüdiger Schwarze
- Anton Gladkyy
- Jens Klostermann

Do we need Particle based CFD for coupling with rigid bodies and granular media?

- Sebastian Borrmann
- sebastian.borrmann@imfd.tu-freiberg.de
- +49 (0) 3731 39-3846

TU Bergakademie Freiberg | Institut of Mechanics and Fluid Dynamics | Lampadiusstr. 4, 09596 Freiberg www.tu-freiberg.de | 14th Workshop on Two-Phase Flow Predictions Halle (Saale) | 07.09.2015

Greenhow, M. & Lin, W. (1983). *Nonlinear Free Surface Effects: Experiments and Theory* (Report no. 83-19.). Cambridge, MA: Department of Ocean Engineering, Massachusetts Institute of Technology.

Sun, H. & Faltinsen O. M. (2007). Water impact of horizontal circular cylinders and cylindrical shells. *Applied Ocean Research, 28*, 299-311. doi: 10.1016/j.apor.2007.02.002