

Lattice-Boltzmann vs. Navier-Stokes simulation of particulate flows

Amir Eshghinejadfard, Abouelmagd Abdelsamie, Dominique Thévenin

University of Magdeburg, Germany

14th Workshop on Two-Phase Flow Predictions Sept. 2015, Halle

CONTENT

- Lattice Boltzmann method (LBM)
- Navier Stokes Equation (NSE)
- LBM vs. NSE
 - Cavity flow
 - Flow over stationary cylinder
 - Turbulent channel flow
- LBM applications in two-phase flows:
 - Spherical particles
 - Ellipsoid particles
 - Particulate flows with heat transfer

LATTICE BOLTZMANN METHOD (LBM)

• LBM is a mesoscopic method originated from LGA.

$$f_{i}(\mathbf{x} + \mathbf{c}_{i}\Delta t, t + \Delta t) = f_{i}(\mathbf{x}, t) - \frac{\Delta t}{\tau} \Big[f_{i}(\mathbf{x}, t) - f_{i}^{eq}(\mathbf{x}, t) \Big]$$
$$\rho = \sum_{i} f_{i} \qquad \rho \mathbf{u} = \sum_{i} \mathbf{c}_{i} f_{i}$$

ALBORZ

- ALBORZ: In-house code developed in LSS-OvGU, Magdeburg.
 - Particulate flows,
 - ➤ Turbulent flows,
 - Porous media,
 - Non-isothermal flows
- Single and Multi Relaxation time
- Parallelized on MPI.
- Particles: Immersed Boundary Method (IBM)
- Natural convection: Boussinesq approximation

IMMERSED BOUNDARY METHOD (IBM)

• Force at each Lagrangian node:

$$\mathbf{F}^n = \frac{\mathbf{U}^d - \mathbf{u}^{noF}}{\Delta t}$$

- *U^d*: desired Lagrangian node velocity;
- *U^{noF}*: velocity without force at each Lagrangian node.
- Interpolation: $\mathbf{u}^{noF} = \sum_{b} \mathbf{u}_{i,j} D(\mathbf{x}_{i,j} \mathbf{X}_{b}) (\Delta h)^{3}$,

• Spread:
$$\mathbf{F}_{i,j} = \sum_{b} \mathbf{F}_{b} D(\mathbf{x}_{i,j} - \mathbf{x}_{b}) \Delta s_{b}$$

CONTENT

- Lattice Boltzmann method (LBM)
- Navier Stokes Equation (NSE)
- LBM vs. NSE
 - Cavity flow
 - Flow over stationary cylinder
 - Turbulent channel flow
- LBM applications in two-phase flows:
 - Spherical particles
 - Ellipsoid particles
 - Particulate flows with heat transfer

DNS: with DINOSOARS (A. Abdelsamie)

- Low Mach (for reacting cases) number or incompressible (for cold flow), 3-D parallel.
- 6th order in space (FDM) and 3rd/4th order in time (Runge-Kutta)
- Multiphase (Lagrangian) for spherical droplets/particles:
 - Inert or Reactive (evaporation, burning)
 - Point-particles or Resolved (Immersed Boundary, IBM)
- Includes Direct Boundary-IBM, for complex geometries
- Point-wise implicit integration for stiff chemistry
- Poisson equation solved by fully spectral method, even for non-periodic boundaries
- Full reactions schemes or tabulated chemistry (FPI)
- Kinetics, transport & thermodynamics: coupled to Cantera1.8 and Eglib3.4

Code Scaling (SuperMuc)

benchmark up to $>10^4$ cores.

CONTENT

- Lattice Boltzmann method (LBM)
- Navier Stokes Equation (NSE)
- LBM vs. NSE
 - Cavity flow
 - Flow over stationary cylinder
 - Turbulent channel flow
- LBM applications in two-phase flows:
 - Spherical particles
 - Ellipsoid particles
 - Particulate flows with heat transfer

Lid driven cavity at Re=1000, 5000

Lid driven cavity at Re=1000, 5000

TURBULENT CHANNEL FLOW

$$\operatorname{Re}_{\tau} = \frac{u_{\tau}.H}{\upsilon} = 180$$
, $u_{\tau} = \sqrt{\frac{\tau_w}{\rho}}$ $\operatorname{Re}_{b} = \frac{u_{b}.2H}{\upsilon} = 5600$ L_{x} L_{y} L_{z} N_{x} N_{y} N_{z} NpointsDINOSOARS 8δ 2δ 4δ 256 193128 6.3 mil.ALBORZ 4δ 2δ 4δ 512 256 256 33.6 mil.

TURBULENT CHANNEL FLOW

τ

* Moser R., Kim J., Mansour N. N. (1999). Phys. Fluid, Vol. 11. ** Vreman A. W., and Kuerten J. G. M. (2014) Phys. Fluid, 2014, Vol. 26.

Flow over stationary cylinder at Re=20

- Domain: 768x768
- DINOSOARS, $C_d = 2.14$
- ALBORZ, $C_d = 2.16$

CONTENT

- Lattice Boltzmann method (LBM)
- Navier Stokes Equation (NSE)
- LBM vs. NSE
 - Cavity flow
 - Flow over stationary cylinder
 - Turbulent channel flow
- LBM applications in two-phase flows:
 - Spherical particles
 - Ellipsoid particles
 - Particulate flows with heat transfer

SPHERICAL PARTICLE SEDIMENTATION

- Dimensions of the box: $0.1 \times 0.16 \times 0.1$ m³.
- The sphere starts its motion at a height H_s =0.12m from the bottom of the box.
- Particle diameter: 15 mm
- Particle density: 1120 kg/m³.
- Re = $\frac{U_{\infty}D}{\upsilon}$ = 1.5; 4.1; 11.6; 32.2

*ten Cate, A., Nieuwstad, C. H., Derksen, J. J., & Van den Akker, H. E. A. (2002).. Phys. Fluids, Vol. 14.

SPHERICAL PARTICLE SEDIMENTATION RESULTS

- Differences with spherical particles:
- Lagrangian points distribution
- Rotational velocity calculation
- > Particle-Particle and Particle-Wall collision force

CREATING AN ELLIPSOID

• Lagrangian points distribution and area calculation

EQUATIONS OF MOTION

Newton's equation of motion for moving particle

For the simulation of a moving particle, we have to consider the equations of motion of the particle.

$$M_{p} \frac{d\mathbf{U}_{p}}{dt} = \int F_{b} dV + (\rho_{p} - \rho_{f}) V_{p} \mathbf{g} + \mathbf{F}^{c}$$

$$I'_{xx} \frac{d\Omega'_{x}}{dt} - \Omega'_{y} \Omega'_{z} (I'_{yy} - I'_{zz}) = T'_{x}$$

$$I'_{yy} \frac{d\Omega'_{y}}{dt} - \Omega'_{z} \Omega'_{x} (I'_{zz} - I'_{xx}) = T'_{y}$$
Body-fixed coordinate
$$I'_{zz} \frac{d\Omega'_{z}}{dt} - \Omega'_{x} \Omega'_{y} (I'_{xx} - I'_{yy}) = T'_{z}$$
Inertial coord.
$$T' = MT,$$

$$M = \begin{pmatrix} q_{0}^{2} + q_{1}^{2} - q_{2}^{2} - q_{3}^{2} & 2(q_{0}q_{1} + \frac{\dot{q}_{0}}{2q_{1}}) \\ 2(q_{1}q_{2} - q_{0}q_{3}) & q_{0}^{2} - q_{1}^{2}\dot{\mathbf{q}} + \overline{q}_{2}^{2} q_{1}^{2} \\ 2(q_{1}q_{3} + q_{0}q_{2}) & 2(q_{2}q_{3} - \frac{\dot{q}_{0}\dot{\mathbf{q}}}{2q_{3}}) \\ q_{0}^{2} q_{1}^{2} q_{1}^{2} q_{2}^{2} q_{1}^{2} + q_{1}^{2} q_{2}^{2} + q_{1}^{2} \\ q_{0}^{2} q_{3}^{2} q_{1}^{2} - q_{2}^{2}^{2} + q_{1}^{2} \\ q_{0}^{2} q_{3}^{2} q_{1}^{2} + q_{1}^{2} \\ q_{0}^{2} q_{3}^{2} q_{1}^{2} - q_{2}^{2}^{2} + q_{1}^{2} \\ q_{0}^{2} q_{3}^{2} + q_{1}^{2} \\ q_{0}^{2} q_{1}^{2} q_{2}^{2} + q_{1}^{2} \\ q_{0}^{2} q_{1}^{2} + q_{1}^{2} \\ q_$$

COLLISION FORCE

• Each Lagrangian point may have collision with one or more points of other particles.

*Feng, Z. G., & Michaelides, E. E. (2004) J. Comput. Physi., Vol. 195.

SPHEROIDAL PARTICLE IN COUETTE FLOW

- Computational domain: 120×120×60 lattice nodes.
- Reynolds number=0.5
- Neutrally buoyant
- Particle radii: 6.0 ; 4.5; 4.5
- Shear rate is $G=2U/N_v=1/8640$
- Re = $\frac{4G.D^2}{v}$

ELLIPSOID PARTICLE IN COUETTE FLOW

SPHEROID ROTATION

Prolate Spheroid in Couette flow Re=50, Particle radii: 12, 3, 3 Domain: 100x80x80 LSS, OvGU, Magdeburg

Multiple particles

- Dimensions of the box: $0.1 \times 0.16 \times 0.1 \text{ m}^3$.
- The upper particle is at height H_s =0.12m from the bottom of the box.
- Particle major diameter: 15 mm
- Particle minor diameter: 7.5 mm
- Particle density: 1120 kg/m³.
- Fluid density: 960 kg/m³
- Fluid viscosity: 58e-3 Pa.s

Multiple particles

Multiple particles

Hot circular cylinder in a square enclosure

- Hot eccentric cylinder in a square box
- D = 0.4L

•
$$Gr = \frac{g\beta(\Theta_h - \Theta_c)L^3}{\upsilon^2} = 100,000$$

• Pr = 10

Hot circular cylinder in a square enclosure

- Hot eccentric cylinder in a square box
- D = 0.4L

•
$$Gr = \frac{g\beta(\Theta_h - \Theta_c)L^3}{\upsilon^2} = 100,000$$

Catalyst particle with varied temperature

- Catalyst particle is located in an enclosure
- Particle temperature changes with time
- $\rho_r = 1.1$
- $C_{P,r} = 1$
- $\operatorname{Re} = 40$
- Gr = 1000
- Pr = 0.7
- $\bar{Q}=1$

* Wachs A., (2011). Comput. Chem. Eng. Vol. 3511.

Catalyst particle with varied temperature

- Catalyst particle is located in an enclosure
- Particle temperature changes with time
- $\rho_r = 1.1$
- $C_{P,r} = 1$
- $\operatorname{Re} = 40$
- Gr = 1000
- Pr = 0.7

• $\bar{Q}=1$

* Wachs A., (2011). Comput. Chem. Eng. Vol. 3511.

Catalyst particle with varied temperature

Catalyst particle motion

60 Catalyst particles with varied temperature

- 60 Catalyst particles are located in an enclosure
- Particle temperature changes with time
- Domain: 8*D*×8*D*×19*D*
- $\rho_r = 1.1$
- $C_{P,r} = 1$
- Re = 40
- Pr = 0.7
- Gr = 1000
- $\bar{Q} = 3.88$

60 Catalyst particles with varied temperature

• 60 Catalyst particles are located in an enclosure

60 Catalyst particles with varied temperature

• 60 Catalyst particles are located in an enclosure

CONCLUSIONS & OUTLOOK

- LBM is a promising approach for multiphase flow simulation.
- Motion of particles of different shapes is successfully modeled by LBM
- Thermal effect can be considered by IB-LBM.
- LBM required less memory and computational time for lid-driven cavity flow.
- In case of turbulent flow the current 6th order NSE code can capture the vortices structure and predict fluctuations better than LBM.

THANK YOU FOR YOUR ATTENTION!