

Franziska Greifzu, Rüdiger Schwarze

Institute of Mechanics and Fluid Dynamics Chair for Numerical Modeling of Granular Flows Lampadiusstraße 4 09599 Freiberg

Simulation of Disperse Particle-Laden Gas Flows with with OpenFOAM and ANSYS FLUENT

10th September 2015

Halle (Saale)

Motivation

Simulations for engineering application in processing plant:

- Analysis of flow structure in static and dynamic air classifier
- CFD simulation of particle-laden flow considering particle-fluid and particle-particle interaction
- Derive feasible simplifications of CFD model
- \rightarrow Validation of models with simple test cases \rightarrow Comparison of CFD packages

Model equations

Averaged conservation equations for incompressible, isothermal and turbulent flow of Newtonian fluid:

$$\nabla \cdot \underline{\bar{u}} = 0 \tag{1}$$

$$\frac{\partial \bar{\underline{u}}}{\partial t} + \varrho \,\left(\underline{\overline{u}} \cdot \nabla\right) \underline{\overline{u}} = -\nabla \bar{p} + \eta \Delta \underline{\overline{u}} - \nabla \cdot \underline{\underline{\tau}}^{\mathrm{RS}} + \underline{\overline{f}}_{W} \tag{2}$$

with:
$$\underline{\underline{\tau}}^{\text{RS}} = \left(\varrho \, \underline{\underline{u}' \, \underline{u}'} \right)$$
 (3)

Force balance in Lagrangian framework:

.

$$\frac{d\underline{x}_{\mathrm{P}}}{dt} = \underline{u}_{\mathrm{P}} \tag{4}$$

$$m_{\rm P} \frac{d\underline{u}_{\rm P}}{dt} = \underline{F}_{\rm D} + \underline{F}_{\rm B} + \underline{F}_{\rm G}$$
⁽⁵⁾

Model equations

Drag force:

$$\underline{F}_{\mathrm{D}} = \frac{3}{4} \frac{\varrho}{\varrho_P} \frac{m_P}{d_P} \cdot C_{\mathrm{D}} \left(\underline{u} - \underline{u}_{\mathrm{P}} \right) \left| \underline{u} - \underline{u}_{\mathrm{P}} \right| \tag{6}$$

Implementation of drag coefficient $C_{\rm D}$ in CFD programs:

ANSYS FLUENT Morsi and Alexander¹

$$C_{\rm D} = a_1 + \frac{a_2}{Re_{\rm P}} + \frac{a_3}{Re_{\rm P}^2}$$
(7)

OpenFOAM

Empirical relation

$$C_{\rm D} = \begin{cases} \frac{24}{Re_{\rm P}} \left(1 + \frac{1}{6} Re_{\rm P}^{2/3} \right) & ; Re_{\rm P} \le 1000\\ 0.424 & ; Re_{\rm P} \ge 1000 \end{cases}$$
(8)

¹Morsi1972

Model equations

Coupling

Classification of coupling schemes and interaction between disperse and continuous phase according to Elahobashi²:

- One-way coupling $\overline{f}_W = 0$ 1):
- Two-way coupling, particles enhance turbulence production Two-way coupling, particles enhance turbulence dissipation $\left\{ \underline{\bar{f}}_W \neq 0 \right\}$ 2:
- 3:
- **4**: Four-way coupling

²Elghobashi1994.

Description

Geometry according to Fessler and Eaton³

³Fessler1999.

Test case backward facing step Applied meshes

Name	Dimension	Cells in z-direction	BC front and back
А	2D	0	-
В	3D	1	empty
С	3D	1	symmetry
D	3D	10	symmetry

- RANS and URANS
- k-ω-SST turbulence model

- isothermal
- 1- and 2-way coupling

Continuous phase	
Inlet	profile with $\underline{\bar{u}}_{avg} = (9.39\ 0\ 0)\ m/s$
	$U_{x,0} = 10.5 m/s$
	$k = 0.45 m^2 / s^2$
	$\omega = 2800 1/s$
Outlet	$\bar{p} = 0 P a$
Wall	$\underline{\bar{u}} = (0 \ 0 \ 0) \ m/s$
Disperse phase	
Particle diameter	$d_{\rm P} = 70\mu m$
Particle density	$\varrho_{ m P} = 8800 kg/m^3$
Particle mass flow rate	$\dot{m}_{\rm P} = 1.58 \cdot 10^{-5} kg/s$
Injection velocity	$\underline{\bar{u}}_{\mathrm{P,avg}} = (10.5 \ 0 \ 0)^{\overline{T}} \ m/s$

Fluid flow

Disperse phase

Disperse phase

Test case confined bluff body

Description

Geometry according to Borée et al.⁴

⁴Boree1999.

Test case confined bluff body Setup

URANS

Standard k- ϵ turbulence model

- isothermal, incompressible
- 2-way coupling

Continuous phase	
Central jet inflow	$\underline{\bar{u}}_{j,avg} = (0\ 0\ 3.01)\ m/s$
	$U_{z,j} = 3.4 m/s$
Annular jet inflow	$\underline{\bar{u}}_{a,avg} = (0\ 0\ 5.36)\ m/s$
Outlet	$\bar{p} = 0 Pa$
Wall	$\underline{\bar{u}} = (0\ 0\ 0)\ m/s$
Disperse phase	
Particle diameter	$d_{\rm P} = 63\mu m$
Particle density	$\varrho_{\rm P} = 2470 kg/m^3$
Particle mass flow rate	$\dot{m}_{\rm P} = 2.78 \cdot 10^{-4} kg/s$
Injection velocity	$\underline{u}_{\mathrm{P,avg}} = (4.08\ 0\ 0)\ m/s$

Fluid flow

10th September 2015

Greifzu, Schwarze

IMFD TU Bergakademie Freiberg 13

Disperse phase

r

Conclusion

- Good agreement of numerically modeled flow fields
- Disperse phase simulation results fit experimental data differences in shear layers
 - Particle dispersion underpredicted in ANSYS FLUENT
 - Particle dispersion overpredicted in OpenFOAM
- Minor influence of coupling scheme due to low volume loadings
- Incorrect computation of particle motion in ANSYS FLUENT 2-D model: neglect of three-dimensional character of turbulence

Thanks for your Attention.