LARGE-EDDY SIMULATION OF BUBBLY TURBULENT FLOWS BASED ON AN EULER-LAGRANGE APPROACH FOR A HUGE NUMBER OF MICROBUBBLES

F. Hoppe, M. Breuer

Department of Fluid Dynamics, Helmut-Schmidt University Hamburg hoppef@hsu-hh.de, breuer@hsu-hh.de

14th Workshop on Two-Phase Flow Predictions Halle (Saale), Sept. 07.-10. 2015

- 2 Continuous Phase
- Oispersed Phase
- 4 Channel Flow Simulations
- 5 Conclusions & Outlook

- 2 Continuous Phase
- Oispersed Phase
- 4 Channel Flow Simulations
- **5** Conclusions & Outlook

Accurate simulation of turbulent bubbly flows at high volume loadings

- 2 Continuous Phase
- **3** Dispersed Phase
- 4 Channel Flow Simulations
- **5** Conclusions & Outlook

LESOCC

Large Eddy Simulation On Curvilinear Coordinates

- Navier-Stokes solver (incompressible fluid)
- 3–D finite-volume approach
 - Curvilinear body-fitted coordinate system
 - Non-staggered (cell-centered) grid arrangement
 - Block-structured grids
- Spatial discretization
 - Viscous fluxes: central differences $\mathcal{O}(\Delta x^2)$
 - Convective fluxes: five different schemes, central diff. $\mathcal{O}(\Delta x^2)$, **CDS–2**

Numerical Method: LESOCC I

LESOCC

Large Eddy Simulation On Curvilinear Coordinates

- Temporal discretization
 - Predictor step (momentum eqns.): low–storage Runge–Kutta scheme, $\mathcal{O}(\Delta t^2)$
 - Corrector step (pressure-correction equation): SIP solver (ILU)
- Pressure-velocity coupling: Momentum interpolation of Rhie & Chow (1983)
- Various subgrid-scale and wall models
- High-performance computing techniques
 - Vectorized and parallelized

- 2 Continuous Phase
- Oispersed Phase
- 4 Channel Flow Simulations
- **5** Conclusions & Outlook

- Lagrangian frame of reference for the dispersed phase
- High volume fraction possible \Rightarrow two- and four-way coupling
- Low density ratio of the bubbles: $\rho_{\rm b}/\rho_{\rm f} \ll 1$

- Lagrangian frame of reference for the dispersed phase
- High volume fraction possible \Rightarrow two- and four-way coupling
- Low density ratio of the bubbles: $\rho_{\rm b}/\rho_{\rm f} \ll 1$

Newton's second law:

$$\frac{\mathrm{d}\mathbf{u}_{\mathrm{b}}}{\mathrm{d}t} = \frac{1}{m_{\mathrm{b}}} \sum_{i} \mathbf{F}_{i}$$

$$\frac{\mathrm{d}\mathbf{x}_{\mathrm{b}}}{\mathrm{d}t} = \mathbf{u}_{\mathrm{b}}$$

$$\frac{\mathrm{d}\boldsymbol{\omega}_{\mathrm{b}}}{\mathrm{d}t} = \frac{1}{I_{\mathrm{b}}} \mathbf{T}$$

- Lagrangian frame of reference for the dispersed phase
- High volume fraction possible \Rightarrow two- and four-way coupling
- Low density ratio of the bubbles: $\rho_{\rm b}/\rho_{\rm f} \ll 1$

Newton's second law:

General procedure:

$$\frac{\mathrm{d}\mathbf{u}_{\mathrm{b}}}{\mathrm{d}t} = \frac{1}{m_{\mathrm{b}}} \sum_{i} \mathbf{F}_{i}$$

$$\frac{\mathrm{d}\mathbf{x}_{\mathrm{b}}}{\mathrm{d}t} = \mathbf{u}_{\mathrm{b}}$$

$$\frac{\mathrm{d}\boldsymbol{\omega}_{\mathrm{b}}}{\mathrm{d}t} = \frac{1}{h_{\mathrm{b}}} \mathbf{T}$$

- Lagrangian frame of reference for the dispersed phase
- High volume fraction possible \Rightarrow two- and four-way coupling
- Low density ratio of the bubbles: $ho_{
 m b}/
 ho_{
 m f}\ll 1$

Newton's second law:

$$\frac{\mathrm{d}\mathbf{u}_{\mathrm{b}}}{\mathrm{d}t} = \frac{1}{m_{\mathrm{b}}} \sum_{i} \mathbf{F}_{i}$$

$$\frac{\mathrm{d}\mathbf{x}_{\mathrm{b}}}{\mathrm{d}t} = \mathbf{u}_{\mathrm{b}}$$

$$\frac{\mathrm{d}\boldsymbol{\omega}_{\mathrm{b}}}{\mathrm{d}t} = \frac{1}{h_{\mathrm{b}}} \mathbf{T}$$

General procedure:

Interpolation of $\boldsymbol{u}_{\mathrm{f}}$ to bubble location

Governing Equations for the Dispersed Phase

- Lagrangian frame of reference for the dispersed phase
- High volume fraction possible \Rightarrow two- and four-way coupling
- Low density ratio of the bubbles: $ho_{
 m b}/
 ho_{
 m f}\ll 1$

Newton's second law:

$$\frac{\mathrm{d}\mathbf{u}_{\mathrm{b}}}{\mathrm{d}t} = \frac{1}{m_{\mathrm{b}}} \sum_{i} \mathbf{F}_{i}$$

$$\frac{\mathrm{d}\mathbf{x}_{\mathrm{b}}}{\mathrm{d}t} = \mathbf{u}_{\mathrm{b}}$$

$$\frac{\mathrm{d}\boldsymbol{\omega}_{\mathrm{b}}}{\mathrm{d}t} = \frac{1}{h} \mathbf{T}$$

General procedure:

Interpolation of $\boldsymbol{u}_{\mathrm{f}}$ to bubble location

← 4th order Runge-Kutta scheme

Analytic solution

Governing Equations for the Dispersed Phase

All^1 forces needed!

• Drag

$$\mathbf{F}_{\mathrm{D}}=rac{1}{8}\mathcal{C}_{\mathrm{D}}
ho_{\mathrm{f}}\pi d_{\mathrm{b}}^{2}\left|\mathbf{u}_{\mathrm{f}}-\mathbf{u}_{\mathrm{b}}
ight|\left(\mathbf{u}_{\mathrm{f}}-\mathbf{u}_{\mathrm{b}}
ight)$$

- Spherical bubble:

$$\label{eq:CDs} \mathcal{C}_{\mathrm{D,s}} = \left\{ \begin{array}{ll} \frac{16}{\mathrm{Re}_\mathrm{b}} \left[1 + 2/\left(1 + \frac{16}{\mathrm{Re}_\mathrm{b}} + \frac{3.315}{\sqrt{\mathrm{Re}_\mathrm{b}}} \right) \right] & \mathrm{clean} \\ \frac{24}{\mathrm{Re}_\mathrm{b}} \left[1 + 0.15 \mathrm{Re}_\mathrm{b}^{0.687} \right] & \mathrm{contam}. \end{array} \right.$$

- Ellipsoidal bubble:

$$C_{\mathrm{D,e}} = 4\mathrm{Eo}/\left(\mathrm{Eo}+9.5
ight)$$

 \Rightarrow Combine:

$$C_{\mathrm{D}} = \sqrt{C_{\mathrm{D,s}}^2 + C_{\mathrm{D,e}}^2}$$

 $^{1}\mathsf{Except}$ the Basset history force

Test: single rising bubble in a resting fluid

All^1 forces needed!

• Buoyancy + Gravity

$$\mathbf{F}_{\mathrm{B}} + \mathbf{F}_{\mathrm{G}} = \mathbf{g} V_{\mathrm{b}} \left(\rho_{\mathrm{b}} - \rho_{\mathrm{f}} \right)$$

• Pressure gradient

$$\mathbf{F}_{\mathrm{PG}} = \rho_{\mathrm{f}} V_{\mathrm{b}} \frac{\mathrm{D} \mathbf{u}_{\mathrm{f}}}{\mathrm{D} t}$$

Added-mass

$$\mathbf{F}_{\rm AM} = \frac{1}{2} \rho_{\rm f} V_{\rm b} \left(\frac{\mathrm{D} \mathbf{u}_{\rm f}}{\mathrm{D} t} - \frac{\mathrm{D} \mathbf{u}_{\rm b}}{\mathrm{D} t} \right)$$

$^{1}\mathsf{Except}$ the Basset history force

All^1 forces needed!

• Lift

$$\mathbf{F}_{\mathrm{L}} = C_{\mathrm{L}} \rho_{\mathrm{b}} V_{\mathrm{b}} \left(\mathbf{u}_{\mathrm{f}} - \mathbf{u}_{\mathrm{b}} \right) \times \mathrm{rot} \, \mathbf{u}_{\mathrm{f}}$$

- ${\rm Re_b} \ll 1$:

$$C_{
m L,s} = 6/\pi^2 \left({
m Re_bSr}
ight)^{-rac{1}{2}} rac{2.255}{\left(1+0.2{
m Re_b/Sr}
ight)^{rac{3}{2}}}$$

-
$$\operatorname{Re}_{\mathrm{b}} \gg 1$$
:

$${\it C}_{\rm L,l} = 1/2 \frac{1+16/{\rm Re_b}}{1+29/{\rm Re_b}}$$

 \Rightarrow Combine:

$$C_{\mathrm{D}} = \sqrt{C_{\mathrm{L,s}}^2 + C_{\mathrm{L,l}}^2}$$

 $^{1}\mathsf{Except}$ the Basset history force

Challenge for LES:

- Fluid solver provides filtered fluid velocity $\overline{u}_{\rm f}$
- Full velocity needed: $u_{\rm f} = \overline{u}_{\rm f} + u_{\rm f}'$

Challenge for LES:

- Fluid solver provides filtered fluid velocity $\overline{u}_{\rm f}$
- Full velocity needed: $\textbf{u}_{\rm f} = \overline{\textbf{u}}_{\rm f} + \textbf{u}_{\rm f}'$

Subgrid-scale model of Pozorski and Apte (2009)

$$d \mathbf{u}_{
m s}' = - \mathbf{G} \, \mathbf{u}_{
m s}' \, dt + \sqrt{2 \sigma_{
m SGS}^2} \, \mathbf{B} \, d\mathbf{W}$$

Langevin eq. $\rightarrow u_{\rm f}^\prime$ at bubble position

- Randomness
- Temporal coupling
 - Crossing trajectory effect
 - Continuity effect
- Directional coupling

- \longleftarrow Stochastic diff. term
- ← Drift term

← Matrix form

Subgrid-scale Model for the Dispersed Phase

$$d\mathbf{u}_{
m s}^\prime = -\mathbf{G}\,\mathbf{u}_{
m s}^\prime\,dt + \sqrt{2\sigma_{
m SGS}^2\,\mathbf{B}\,d\mathbf{W}}$$

- Turbulent kinetic energy: $k_{
 m SGS} = 1/2 \left(\overline{\mathbf{u}}_{
 m f} \overline{\overline{\mathbf{u}}}_{
 m f}\right)^2$
- Estimated fluctuations: $\sigma_{
 m SGS} = \sqrt{2/3 \, k_{
 m SGS}}$
- Fluctuation length scale: $\Delta_{\rm SGS}$
 - Δ_{filter} (Pozorski and Apte, 2009)
 - Here: $\Delta_{\text{filter}} f_{\text{van Driest}}$
- Fluctuation time scale: $\tau'_{\rm L} = C \frac{\Delta_{\rm SGS}}{\sigma_{\rm SGS}}$
- Crossing trajectory & continuity effect ← Csanady (1963)
- Matrix $\mathbf{G} \Rightarrow \mathbf{B} = \sqrt{\mathbf{G}}$

$$G_{ij} = \frac{1}{\tau'_{\mathrm{L},\perp}} \delta_{ij} + \left(\frac{1}{\tau'_{\mathrm{L},\parallel}} - \frac{1}{\tau'_{\mathrm{L},\perp}}\right) r_i r_j, \qquad r_i = \frac{u_{\mathrm{rel},i}}{|\mathbf{u}_{\mathrm{rel}}|}$$

Subgrid-scale Model for the Dispersed Phase

C-Space vs. P-Space Tracking

- P-space is curvilinear
- Point location not trivial
- \Rightarrow Time-consuming search algorithms required

- P-space is curvilinear
- Point location not trivial
- $\Rightarrow {\rm Time-consuming \ search} \\ {\rm algorithms \ required}$

- C-space is orthonormal
- Point location trivial
- \Rightarrow No search algorithms required

- 2 Continuous Phase
- 3 Dispersed Phase

5 Conclusions & Outlook

DNS:

Channel downflow of Molin et al. (2012)

Flow

• $\operatorname{Re}_{\tau} = u_{\tau} \, \delta / \nu = 150$, $\delta = 20 \, \mathrm{mm}$

Present Simulation:

- Fixed pressure gradient
- Grid: $256 \times 128 \times 256$ CV
- Periodic BC stream- and spanwise
- No-slip BC at smooth wall
- Two-way coupled

Bubbles

- *N*_b = 21,940
- $d_{\rm b} = 220 \, \mu {
 m m}$
- $\Phi_{\mathrm{V,tot}} = 1 \cdot 10^{-4}$
- Surfactant contaminated
- Bubble SGS model not activated

Setup of the Test Case

Fluid

Bubbles

Comparison with the Reference Case

Comparison with the Reference Case

19

- Slight overestimation of the velocities in the channel center
- Fluctuations slightly underpredicted

- Bubbles follow fluid motion
- Close agreement for volume fraction
- $\Rightarrow\,$ Close overall agreement between present sim. and reference data

DNS:

Channel downflow of Molin et al. (2012)

Flow

• $\operatorname{Re}_{\tau} = u_{\tau} \, \delta / \nu = 150$, $\delta = 20 \, \mathrm{mm}$

Present Simulation:

- Fixed pressure gradient
- Grid: $256 \times 128 \times 256$ CV
- Periodic BC stream- and spanwise
- No-slip BC at smooth wall
- Two-way coupled

Bubbles

- $N_{\rm b} = 21,940/43,880/87,760$
- $d_{\rm b} = 220 \, \mu{
 m m}$
- $\Phi_{\rm V,tot} = 1\cdot 10^{-4}/2\cdot 10^{-4}/4\cdot 10^{-4}$
- Surfactant contaminated
- Bubble SGS model not activated

• $\Phi_{\rm V,tot} = 2 \times 10^{-4}$: strongly reduced fluid velocity

• $\Phi_{\rm V,tot} = 4 \times 10^{-4} {\rm :}$ reversed flow \rightarrow upflow

\Rightarrow Strong impact of momentum added by two-way coupling

Higher volume fraction

- Fluctuations strongly reduced
- Bubble and fluid fluctuations equal
 - $\rightarrow~$ Fluid fluctuations driven by the bubbles

 \Rightarrow Laminarization

- $\Phi_{V,tot} = 2 \times 10^{-4}$: bubbles pushed towards channel center
- \rightarrow Stronger lift due to higher $u_{\rm rel}$

 $\begin{array}{ll} \mbox{Video:} \ \Phi_{\rm tot} = 1 \cdot 10^{-4} \\ \mbox{Video:} \ \Phi_{\rm tot} = 4 \cdot 10^{-4} \end{array}$

DNS:

Channel downflow of Molin et al. (2012)

Flow

• $\operatorname{Re}_{\tau} = u_{\tau} \, \delta / \nu = 150$, $\delta = 20 \, \mathrm{mm}$

Present Simulation:

- Fixed pressure gradient
- Grid: $256 \times 128 \times 256$ CV
- Periodic BC stream- and spanwise
- No-slip BC at smooth wall
- Two-way coupled

Bubbles

- $N_{\rm b}=21,940/87,760$
- $d_{\rm b} = 220 \, \mu{
 m m}/d_{\rm b} = 138.6 \, \mu{
 m m}$
- $\Phi_{\mathrm{V,tot}} = 1 \cdot 10^{-4}$
- Surfactant contaminated
- Bubble SGS model not activated

Increased Bubble Number

Increased Bubble Number

DNS:

Channel downflow of Molin et al. (2012)

Flow

• $\operatorname{Re}_{\tau} = u_{\tau} \, \delta / \nu = 150$, $\delta = 20 \, \mathrm{mm}$

Present Simulation:

- Fixed pressure gradient
- Grid: $128 \times 128 \times 128$ CV
- Periodic BC stream- and spanwise
- No-slip BC at smooth wall
- Two-way coupled

Bubbles

- *N*_b = 21,940
- $d_{\rm b} = 220 \, \mu {
 m m}$
- $\Phi_{V,total} = 1 \cdot 10^{-4}$
- Surfactant contaminated
- Particle SGS model of Pozorski & Apte (2009) activated

Influence of the Particle Subgrid-Scale Model

 Similar results for wall-normal and spanwise directions

Influence of the SGS Model of the Dispersed Phase 29

Influence of the Particle Subgrid-Scale Model

 Correct level of turbulent kinetic energy added

- Correct level of turbulent kinetic energy added
- $k_{
 m SGS}^{
 m seen} > k_{
 m SGS}$
- Bubbles tend to accumulate in regions of high fluctuations/turbulent kinetic energy

Influence of the Particle Subgrid-Scale Model

- 2 Continuous Phase
- **3** Dispersed Phase
- 4 Channel Flow Simulations
- 5 Conclusions & Outlook

Conclusions

- LESOCC successfully extended towards tracking of bubbles
 - $\rightarrow\,$ Very good agreement to DNS results
- Increased volume fraction
 - Decreases/reverts fluid velocity
 - Laminarizes the flow
- Increased bubble number with marginal effect
- Subgrid-scale model for the dispersed phase
 - $\rightarrow\,$ Small influence for bubbles

Outlook

- Extend present investigations
- Higher Re flows
- Include coalescence & break-up of bubbles

Thank you for your attention!

Rhie, C.M. and Chow, W.L.; 1983 A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation AIAA Journal, 21.

🛸 Clift, R. and Grace, J.R. and Weber, M.E.; 1978 Bubbles, drops and particles. New York: Academic Press

- Duineveld, P.C.; 1995 The rise velocity and shape of bubbles in pure water at high Reynolds number. J. Fluid. Mech.
- Pozorski, J. and Apte, S.V.; 2009 Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion. Int. J. Multiphase Flow, 35.

Csanady, G.T.; 1963

Turbulent diffusion of heavy particles in the atmosphere. J. Atmo. Sci., 20.

Molin, D. and Marchioli, C. and Soldati, A.; 2012 Turbulence modulation and microbubble dynamics in vertical channel flow. Int. J. Multiphase Flow, 42.

Backup

Backup Slides

$$d\mathbf{u}_{
m s}' = -\mathbf{G}\,\mathbf{u}_{
m s}'\,dt + \sqrt{2\sigma_{
m SGS}^2}\,\mathbf{B}\,d\mathbf{W}$$

- Turbulent kinetic energy: $k_{
 m SGS} = 1/2 \left(\overline{\mathbf{u}}_{
 m f} \overline{\overline{\mathbf{u}}}_{
 m f}\right)^2$
- Estimated fluctuations: $\sigma_{
 m SGS} = \sqrt{2/3 \, k_{
 m SGS}}$
- Fluctuation length scale: $\Delta_{\rm SGS}$
 - $\Delta_{
 m filter}$ (Pozorski and Apte, 2009)
 - Here: Δ_{filter} f_{van Driest}
- Fluctuation time scale: $au_{
 m L}^{\prime} = C rac{\Delta_{
 m SGS}}{\sigma_{
 m SGS}}$

$$d\mathbf{u}_{
m s}' = -\mathbf{G}\,\mathbf{u}_{
m s}'\,dt + \sqrt{2\sigma_{
m SGS}^2}\,\mathbf{B}\,d\mathbf{W}$$

• Crossing trajectory & continuity effect \leftarrow Csanady (1963)

- Parallel to direction of relative motion

$$au_{\mathrm{L},\parallel}^{\prime} = rac{ au_{\mathrm{L}}^{\prime}}{\sqrt{1+\mathbf{u}_{\mathrm{rel}}^{2}/\sigma_{\mathrm{rel}}^{2}}}$$

- Perpendicular to direction of relative motion

$$\tau_{\mathrm{L},\perp}' = \frac{\tau_{\mathrm{L}}'}{\sqrt{1+4\mathbf{u}_{\mathrm{rel}}^2/\sigma_{\mathrm{rel}}^2}}$$

Subgrid-Scale Model for the Dispersed Phase

$$d\mathbf{u}_{
m s}' = -\mathbf{G}\,\mathbf{u}_{
m s}'\,dt + \sqrt{2\sigma_{
m SGS}^2}\,\mathbf{B}\,d\mathbf{W}$$

• Matrix **G**

$${\it G}_{ij} = rac{1}{ au_{
m L, \perp}^{\prime}} \delta_{ij} + \left(rac{1}{ au_{
m L, \parallel}^{\prime}} - rac{1}{ au_{
m L, \perp}^{\prime}}
ight) {\it r}_i {\it r}_j$$

• Matrix
$$\mathbf{B} = \sqrt{\mathbf{G}}$$

$$\mathcal{B}_{ij} = rac{1}{\sqrt{ au_{\mathrm{L},\perp}^{\prime}}} \delta_{ij} + \left(rac{1}{\sqrt{ au_{\mathrm{L},\parallel}^{\prime}}} - rac{1}{\sqrt{ au_{\mathrm{L},\perp}^{\prime}}}
ight) \mathit{r_i} \mathit{r_j}$$

• Direction of relative motion $r_i = u_{\mathrm{rel},i}/|\mathbf{u}_{\mathrm{rel}}|$

Subgrid-Scale Model for the Dispersed Phase

Flow

• $\operatorname{Re}_{\tau} = u_{\tau} \, \delta / \nu =$ 644, $\delta =$ 20 mm

Present Simulation:

- Grid: $128 \times 128 \times 128$ CV
- Periodic BC stream- and spanwise
- No-slip BC at smooth wall
- Four-way coupled

Particles

- $N_{
 m p}=6\cdot 10^6$
- $d_{\rm b} = 4 \, \mu {
 m m}$
- $\Phi_{V,tot} = 6.78 \cdot 10^{-7}$
- $\eta = 1.23 \cdot 10^{-3}$
- SGS model of Pozorski & Apte (2009)

Subgrid-Scale Model for Solid Particles

Subgrid-Scale Model for Solid Particles

Subgrid-Scale Model for Solid Particles