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Motivation
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Figure: Oil and Gas fields and pipelines of Turkmenistan
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Motivation

Multiphase flow solutions

Figure: Description of the Physical problem
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Physical problem o

» Gas transportation requires interconnected systems of pipelines with hundreds
or thousands of kilometres of pipes.

» Such pipelines can transport natural gas through it and can be located under
the water surface.

» During transportation, there is a heat transfer between gas and the
environment.

» Some parts of gas components can undergo a phase change such that gas
hydrates are formed.

» This leads to an unbalance in the flow rate of the gas loss of 1-3 % from the
total volume of transfered gas.

» Multiphase flow has to be studied.
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Flow rate in a horizontal pipeline

» For T > T, and p # p. pure gas flow,
» For T < T, and p = p., formation of gas hydrates,
» For other cases gas flow with hydrates.

Other Cases
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Mathematical model: Single-phase gas flow o

Euler equations of compressible flow:

Z ax = in Q=9x(0,0)
— J

where Q € R? is a bounded domain occupied be gas, / > 0 is the length of a time
interval. With the state vector

U= (U]_, uz, us, u4)T - (/)7/)V17/~)V27 E)T

and Euler fluxes
pvi pv2
2
F(U): PV1 +p /);1V2
pvive pvs +p
(E+pvi (E+p)v2
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Mathematical model: Single-phase gas flow

» Equation of state
,(J‘V|2
p= ('y— 1)(E — —)

with the Poisson adiabatic constant v > 1 .

» |nitial conditions
U(x,0) = U°(x), x€Q

2

» Boundary conditions (inflow, outflow, fixed wall condition, moving walls,

periodic, farfield)
B(U) =G, on 0Qx(0,/),

where B is some boundary operator.
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Mathematical model: Single-phase gas flow o

Assuming that U € C1(Q7)™, system of conservation laws can be written as a

quasilinear system
m

ou ou
vy +;Aj(u)a—xj =0

with m x m matrices A;(U),j =0, ..., m, which depend on the unknown function
U in a generally nonlinear way. Here,
OF;(U)

ou

A =

is the Jacobi matrix.
Remark. Nonlinear phenomena as nonexistence of global smooth solutions on a
massive set of initial and boundary data may occur.
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Mathematical model: Two-phase flow

Two-fluid flow model: two flow phases of gas and dispersed particles.
Gas phase:

o«
% + V- (agpgvg) =0
Oz pgV, )
% + V' (gpgvg @ vg) + V(agpg) = pg V ag — Ky
I(agkg)

ot + V- (g Eg + agpg)ve) = v (P,;— V ag — f4) — qn.

Solid phase (dispersed particles):

a((gstpS) + Vv (O‘spsVs) =0
O(aspsvs i
% + v (asPsVs & Vs) + V(asps) =ps V Qs + fy
O(asEs)

Ot +V'((O‘sEs‘i’O‘sps)Vs) - Vi'(pévas+fd)+qh-
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Mathematical model: Two-phase flow o

» Saturation constraint: az + s =1

» Equation of state: p = (v — 1)pgeg, €5 = Cyg Tz Where, e is the internal
energy, G,z is the specific heats at constant volume and T, is temperature.

» Interfacial drag force and the heat transfer:

24

3C =~ (1+0.15Re%%7) | Re < 1000,
= 290 (), Gy — | Re (OISR e
0.44, Re > 1000.
1
6Nu 1 Coglhg \ 2
qn = 7 kgas(Tg — Ts), Nu=2+0.65Re> <pigg> .

Here, Cy4, Re, Nu, kg, Cpg, |15 are a dimensionless drag coefficient, Reynolds
number, Nusselt number, thermal conductivity, heat capacity at constant
pressure and (microscopic) dynamic viscosity, respectively.
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Mathematical model: Continuous problem

» Vector form
ou
—+V-F(U)=G
5 T (V)
where, F(U) = (F1(U), Fo(U))" are inviscid fluxes
and G is force term.
» Quasilinear form

(For simplicity G = 0)

ou
LA —
o T A(U)VU =0
where, W)
oF;(U
A; = =12
J(U) aU ) J )

10 September 2015, Halle(Saale)

L

12 /24



L

VavarAr
Numerical approximation o

» Two-fluid model, each phase is the single-phase hyperbolic conservation laws,
» A classical solution of nonlinear hyperbolic systems is rather complex,

» For singularly perturbed parabolic and hyperbolic equations the standard
application of the finite element method gives nonphysical oscillations,

» Streamline upwind Petrov-Galerkin method, where the artificial diffusion
acting only in the direction of the streamlines,

» Approximate solution by usung SUPG may still exhibit overshoots or
undershoots,

» Shock capturing method, where the artificial diffusion acting perpendicular to
the streamlines.
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Numerical approximation

Finite element spaces
» V, C HY(Q) = {u e [3(Q) : Vu € L?(Q)},
» S, = {Uh|Uh € [Vh]m, Uh|e S [Pl(e)]"’,e € Th, B(Uh) =G, on F},
> Wh = {pnlen € [Vi]™, pnle € [P1(e)]", e € Th, B(w, ) =0, on T}
Assumption
» 00, =T =T UloUly
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Numerical approximation

» The stabilized full-discrete weak form.
Find U] € S, with Up(0) = P,U° such that:

Un+l —uyr o o
/hfh'90/7—/F(Uh)'V‘Ph‘*‘/’\l(‘1/1+al/i77'7)'9017+
Q Q r
+SUPG(Up, 1) + SHOCK(Up, o) =0

V(,Dh e W,,.
Here,

T, — U[,’“; Up

» The nonlinear system of equations is solved by Newton iteration.
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Numerical approximation

We approximate the boundary flux with a numerical flux N, as numerical flux we
choose Lax-Friedrichs flux, such that:

N(U, .U, .n) = (F(U,) - n+ F(U,) - n+a(U, - U,)) /2

where n is normal vector, « is fixed number or mesh depend value.
The streamline diffusion stabilization term, such that:

Un+1 Uh o o o
SUPG(Uy, ¢p) = Z/ —h ___~h L A(U,) - VU, ) - A(U,) - Ve

ecTy

where J. is SUPG stabilization parameter. The shock capturing term, such that:

SHOCK(U/,, goh) = Z Ne - VU/, : Vgoh

ect, V€

where 7). is shock-capturing parameter.
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Shock tube problem: Single phase gas flow

The initial condition is given as:

(1.0,0.0,0.0,5.0)", x <0,
(1.101463,0.0,0.0,2.5)" , x >0.

The inflow/outflow and solid wall boundary conditions are applied on
O, =T UlToUTlMw1 Uy

U° = (p°,0°), p°v3, EO)T = {

wi

F

w2

\
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Shock tube problem: Single phase gas flow o

At time t = 1 we compare the density distribution in the cut y = 0 computed by
the stabilized FEM with analytical solution.

Density with 300 x 16 nodes at t=1
[ — T T T T T T T T T T T

Figure: Density distribution at time t = 1 with 300 x 16 nodes.
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Shock tube problem: Single phase gas flow

Figure: Velocity distribution at time Figure: Pressure distribution
t = 1 with 300 x 16 nodes. at time t = 1 with 300 x 16
nodes.
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Shock tube problem: two-phase flow

The initial dates:

o [025 x<o,

“€~ Y010, x>0

0_ (0,0 00,0 00,0 ~0F0 0 .00 0,0 0F0\T _
UP = (agpg, CgpaVig, QP vag, agEg, o) afvy), afvy, ] EP) T =

(0.25,0.0,0.0,1.25,0.75,0.0,0.0,3.75) ", x <0,
(0.1101463,0.0, 0.0, 0.25,0.9,0.0,0.0,2.25)", x > 0.
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Shock tube problem: two-phase flow
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Figure: Initial volume fractions for
gas (red) and for liquid (green).
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Figure: Volume fractions for
gas (red) and for liquid
(green) at t = 1.
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Shock tube problem:

Figure: Velocity distributions for gas
(orange) and liquid (blue) at time
t=1.
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Figure: Pressure distributions
at time t = 1.
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Future work

» Stadtke H., Gasdynamic Aspects of Two-Phase Flow, Wiley-VCH; 1 edition

(October 6, 2006),

Yy vV VvV VY

Three phase flow.

Implementation and testing of the overall model,
Improvement of stabilization techniques,
Parallel implementation in three dimension,

T>Ter p#per

Single-phase gas flow:

Compressible Euler
equation
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Three-phase flow:

Compressible

Gas-Liquid-Solid

flow

Other Cases
Two-phase flow:

Compressible Particle-
Laden Gas flow
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Thank you for your attention!
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