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Motivation

Figure: Oil and Gas fields and pipelines of Turkmenistan
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Motivation

Multiphase flow solutions

Figure: Description of the Physical problem
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Physical problem

I Gas transportation requires interconnected systems of pipelines with hundreds
or thousands of kilometres of pipes.

I Such pipelines can transport natural gas through it and can be located under
the water surface.

I During transportation, there is a heat transfer between gas and the
environment.

I Some parts of gas components can undergo a phase change such that gas
hydrates are formed.

I This leads to an unbalance in the flow rate of the gas loss of 1-3 % from the
total volume of transfered gas.

I Multiphase flow has to be studied.
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Flow rate in a horizontal pipeline

I For T > Tcr and p , pcr pure gas flow,
I For T 6 Tcr and p = pcr formation of gas hydrates,
I For other cases gas flow with hydrates.
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Mathematical model: Single-phase gas flow

Euler equations of compressible flow:

∂U
∂t +

2∑
j=1

∂Fj(U)
∂xj

= 0 in QI = Ω× (0, I)

where Ω ∈ <2 is a bounded domain occupied be gas, I > 0 is the length of a time
interval. With the state vector

U = (u1, u2, u3, u4)T = (ρ, ρv1, ρv2,E )T

and Euler fluxes

F (U) =


ρv1 ρv2

ρv2
1 + p ρv1v2
ρv1v2 ρv2

2 + p
(E + p)v1 (E + p)v2
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Mathematical model: Single-phase gas flow

I Equation of state

p = (γ − 1)(E − ρ|v |2
2 )

with the Poisson adiabatic constant γ > 1 .
I Initial conditions

U(x , 0) = U0(x), x ∈ Ω
I Boundary conditions (inflow, outflow, fixed wall condition, moving walls,

periodic, farfield)
B(U) = G , on ∂Ω× (0, I),

where B is some boundary operator.
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Mathematical model: Single-phase gas flow

Assuming that U ∈ C1(QT )m, system of conservation laws can be written as a
quasilinear system

∂U
∂t +

m∑
j=1

Aj(U)∂U
∂xj

= 0

with m ×m matrices Aj(U), j = 0, ...,m, which depend on the unknown function
U in a generally nonlinear way. Here,

Aj = ∂Fj(U)
∂U

is the Jacobi matrix.
Remark. Nonlinear phenomena as nonexistence of global smooth solutions on a
massive set of initial and boundary data may occur.
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Mathematical model: Two-phase flow
Two-fluid flow model: two flow phases of gas and dispersed particles.
Gas phase:

∂(αgρg )
∂t +5· (αgρgvg ) = 0

∂(αgρgvg )
∂t +5· (αgρgvg ⊗ vg ) +5(αgpg ) = pi

g 5 αg − fd

∂(αgEg )
∂t +5· ((αgEg + αgpg )vg ) = v i · (pi

g 5 αg − fd )− qh.

Solid phase (dispersed particles):

∂(αsρs)
∂t +5· (αsρsvs) = 0

∂(αsρsvs)
∂t +5· (αsρsvs ⊗ vs) +5(αsps) = pi

s 5 αs + fd

∂(αsEs)
∂t +5· ((αsEs + αsps)vs) = v i · (pi

s 5 αs + fd ) + qh.
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Mathematical model: Two-phase flow

I Saturation constraint: αg + αs = 1
I Equation of state: p = (γ − 1)ρgeg , eg = cυgTg where, eg is the internal

energy, cυg is the specific heats at constant volume and Tg is temperature.
I Interfacial drag force and the heat transfer:

fd = 3Cdαsρg
4d |ug−us |(ug−us), Cd =


24
Re
(
1 + 0.15Re0.687) , Re < 1000,

0.44, Re ≥ 1000.

qh = 6Nu
d2 kgαs(Tg − Ts), Nu = 2 + 0.65Re 1

2

(
cpgµg

kg

) 1
3

.

Here, Cd , Re, Nu, kg , cpg , µg are a dimensionless drag coefficient, Reynolds
number, Nusselt number, thermal conductivity, heat capacity at constant
pressure and (microscopic) dynamic viscosity, respectively.
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Mathematical model: Continuous problem

I Vector form
∂U
∂t +∇·F (U) = G

where, F (U) = (F1(U),F2(U))T are inviscid fluxes
and G is force term.

I Quasilinear form
(For simplicity G = 0)

∂U
∂t + Aj(U)∇U = 0

where,
Aj(U) = ∂Fj(U)

∂U , j = 1, 2.
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Numerical approximation

I Two-fluid model, each phase is the single-phase hyperbolic conservation laws,
I A classical solution of nonlinear hyperbolic systems is rather complex,
I For singularly perturbed parabolic and hyperbolic equations the standard

application of the finite element method gives nonphysical oscillations,
I Streamline upwind Petrov-Galerkin method, where the artificial diffusion

acting only in the direction of the streamlines,
I Approximate solution by usung SUPG may still exhibit overshoots or

undershoots,
I Shock capturing method, where the artificial diffusion acting perpendicular to

the streamlines.
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Numerical approximation

Finite element spaces
I Vh ⊂ H1(Ω) = {u ∈ L2(Ω) : ∇u ∈ L2(Ω)},
I Sh = {Uh|Uh ∈ [Vh]m,Uh|e ∈ [P1(e)]m, e ∈ τh,B(Uh) = G , on Γ},
I Wh = {ϕh|ϕh ∈ [Vh]m,ϕh|e ∈ [P1(e)]m, e ∈ τh,B(ϕ−

h ) = 0, on Γ}
Assumption
I ∂Ωh = Γ = ΓI ∪ ΓO ∪ ΓW
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Numerical approximation

I The stabilized full-discrete weak form.
Find Un

h ∈ Sh with Uh(0) = PhU0 such that:∫
Ω

Un+1
h −Un

h
k ·ϕh −

∫
Ω

F (Uh) · ∇ϕh +
∫

Γ
N(U+

h ,U
−
h ,n) ·ϕ+

h

+SUPG(Uh,ϕh) + SHOCK (Uh,ϕh) = 0

∀ϕh ∈Wh.
Here,

Uh = Un+1
h + Un

h
2

I The nonlinear system of equations is solved by Newton iteration.
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Numerical approximation
We approximate the boundary flux with a numerical flux N, as numerical flux we
choose Lax-Friedrichs flux, such that:

N(U+
h ,U

−
h ,n) =

(
F (U+

h ) · n + F (U−h ) · n + α(U+
h −U−h )

)
/2

where n is normal vector, α is fixed number or mesh depend value.
The streamline diffusion stabilization term, such that:

SUPG(Uh,ϕh) =
∑
e∈τh

∫
e
δe ·

(
Un+1

h −Un
h

k + A(Uh) · ∇Uh

)
· A(Uh) · ∇ϕh

where δe is SUPG stabilization parameter. The shock capturing term, such that:

SHOCK (Uh,ϕh) =
∑
e∈τh

∫
e
ηe · ∇Uh · ∇ϕh

where ηe is shock-capturing parameter.
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Shock tube problem: Single phase gas flow
The initial condition is given as:

U0 = (ρ0, ρ0v0
1 , ρ

0v0
2 ,E 0)T =

{
(1.0, 0.0, 0.0, 5.0)T

, x < 0,

(1.101463, 0.0, 0.0, 2.5)T
, x ≥ 0.

The inflow/outflow and solid wall boundary conditions are applied on
∂Ωh = ΓI ∪ ΓO ∪ ΓW 1 ∪ ΓW 2

x

y

0.1

0

-3 3

ГI ГO

ГW1

ГW2
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Shock tube problem: Single phase gas flow
At time t = 1 we compare the density distribution in the cut y = 0 computed by
the stabilized FEM with analytical solution.

Figure: Density distribution at time t = 1 with 300 x 16 nodes.
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Shock tube problem: Single phase gas flow

Figure: Velocity distribution at time
t = 1 with 300 x 16 nodes.

Figure: Pressure distribution
at time t = 1 with 300 x 16
nodes.
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Shock tube problem: two-phase flow

The initial dates:

α0
g =

{
0.25, x < 0,
0.10, x ≥ 0.

U0 = (α0
gρ

0
g , α

0
gρ

0
gv0

1g , α
0
gρ

0v0
2g , α

0
gE 0

g , α
0
l , α

0
l v0

1l , α
0
l v0

2l , α
0
l E 0

l )T ={
(0.25, 0.0, 0.0, 1.25, 0.75, 0.0, 0.0, 3.75)T

, x < 0,

(0.1101463, 0.0, 0.0, 0.25, 0.9, 0.0, 0.0, 2.25)T
, x ≥ 0.
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Shock tube problem: two-phase flow

Figure: Initial volume fractions for
gas (red) and for liquid (green).

Figure: Volume fractions for
gas (red) and for liquid
(green) at t = 1.
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Shock tube problem: two-phase flow

Figure: Velocity distributions for gas
(orange) and liquid (blue) at time
t = 1.

Figure: Pressure distributions
at time t = 1.
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Future work
I Städtke H., Gasdynamic Aspects of Two-Phase Flow, Wiley-VCH; 1 edition

(October 6, 2006),
I Implementation and testing of the overall model,
I Improvement of stabilization techniques,
I Parallel implementation in three dimension,
I Three phase flow.
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Figure: Behavior of gas flow in a horizontal pipeline
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Thank you for your attention!
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