

14th Workshop on Two-Phase Flow Predictions

University of Halle-Wittenberg, Halle (Saale), September 7-10, 2015

MICRO-SWIMMER DYNAMICS IN WIND-SHEARED FREE-SURFACE TURBULENCE

S. LOVECCHIO, C. MARCHIOLI, A. SOLDATI

DEPT. ELECTRICAL, MANAGEMENT & MECHANICAL ENGINEERING, UNIVERSITY OF UDINE (ITALY)

MOTIVATION: PLANKTON

DYNAMICS NEAR A FREE SURFACE

PHYTOPLANKTON IS THE PHOTOSYNTHETIC PART OF PLANKTON

- PRIMARY PRODUCTION: ORGANIC COMPOUNDS FROM CO2
- IMPORTANT PART OF THE GLOBAL CARBON CYCLE
- PROVIDES 50% OF THE EARTH'S OXYGEN
- SUSTAINS THE AQUATIC FOOD WEB

Multiphase Flow

University of Udine

Laboratory

MOTIVATION: PLANKTON

DYNAMICS NEAR A FREE SURFACE

PLANKTON PATCHINESS OCCURS AT DIFFERENT SCALES → NO UNIQUE EXPLANATION

10⁷ m

BRIDGE THE GAP:

10³ m

- > SWIMMING
- > COLLECTIVE POPULATION DYNAMICS
- > TURBULENT TRANSPORT

ROLE OF SURFACE TURBULENCE STILL UNCLEAR!

10⁻⁵ m

OUTLINE OF THE

PRESENTATION

PART 1: PASSIVE PARTICLES AT A FREE-SURFACE

PHYTOPLANKTON CELLS PASSIVELY TRANSPORTED BY THE FLOW

DYNAMICS OF CLUSTER AT FREE-SURFACE TURBULENCE SUBJECT TO WIND STRESS

PART 2: ACTIVE PARTICLES AT A FREE-SURFACE

SELF-PROPELLED PHYTOPLANKTON CELLS

INFLUENCE OF WIND STRESS ON PLANKTON SURFACING

PART 1:

PASSIVE PARTICLES AT A FREE-SURFACE

PHYSICAL PROBLEM AND

MODELLING APPROACH

Flow solver: $\cdot \frac{\partial u_i}{\partial x_i} = 0$ • $\rho(\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_i}) = -\frac{\partial P}{\partial x_i} + \mu \frac{\partial^2 u_i}{\partial x_i^2}$

- **3D TIME-DEPENDENT** TURBULENT WATER FLOW
- SHEAR REYNOLDS NUMBER: Re₇= 171, 509
- CHANNEL SIZE:

 $L_x \times L_y \times L_z = 4\pi h \times 2\pi h \times 2h$

- **PSEUDO-SPECTRAL DNS**
- TIME INTERGRATION: • ADAMS-BASHFORTH (CONVECTIVE TERMS) **CRANK-NICOLSON (VISCOUS TERMS)**

PHYSICAL PROBLEM AND

MODELLING APPROACH

- **Lagrangian particle tracking:** $\frac{dx_i}{dt} = v_i$
 - $\frac{dv_i}{dt} = (1 \frac{\rho_f}{\rho_p})g_i + \frac{u_i v_i}{\tau_p}(1 + 0.15Re_p^{0.687})$

- ONE-WAY COUPLING
- FULLY-ELASTIC PARTICLE-WALL
 COLLISION
- TIME INTEGRATION: 4TH ORDER RUNGE-KUTTA
- FLUID VELOCITY INTERPOLATION:
 6th ORDER LAGRANGE POLYNOMIALS

PARTICLE TIMESCALE – $\tau_P = d_P^2 \rho_P / 18 \mu$ FLOW TIMESCALE - $\tau_F = L/U = v/U_\tau^2$ PARTICLE STOKES NUMBER, ST = τ_P / τ_F

Re_{τ}	$St = \tau_p \cdot \nu / u_\tau^2$		
171	0.064	0.114	0.121
509	0.562	1.013	1.069
	$S{=}0.5$	0.9	0.95
	1		

S=PARTICLE-TO-FLUID DENSITY RATIO

TOPOLOGY OF PARTICLE

CLUSTERS AT THE FREE SURFACE

PARTICLES DISTRIBUTED:

UNIFORMLY OVER A SURFACE

$$N(r) \simeq r^2$$

UNIFORMLY ALONG A LINE $N(r) \simeq r$

IN GENERAL

V IS THE CLUSTERS' FRACTAL DIMENSION (CORRELATION DIM.)

TOPOLOGY OF PARTICLE

CLUSTERS AT THE FREE SURFACE

RESULTS FROM LOVECCHIO ET AL., PHYS. REV. E (2013)

 $T_{\mathcal{L}} >> \tau_{\mathrm{K}}$

LONG-LIVED

TOPOLOGY OF PARTICLE

CLUSTERS AT THE FREE SURFACE

EFFECT OF WIND ON PARTICLES

AT THE FREE-SURFACE

WIND OPPOSITE TO THE FLOW DIRECTION

MOVIE

EFFECT OF WIND ON PARTICLES

AT THE FREE-SURFACE

WIND ALONG THE FLOW DIRECTION

MOVIE

PARTICLES AT THE FREE-SURFACE

DIFFERENT TOPOLOGY OF FILAMENTS AT THE SURFACE

PART 2:

ACTIVE PARTICLES (SWIMMERS) AT A FREE-SURFACE

MODELLING MICRO-SWIMMERS

LESSON LEARNED FROM PLANKTON

GYROTAXIS: ANY DIRECTED LOCOMOTION RESULTING FROM COMBINATION OF GRAVITATIONAL AND VISCOUS TORQUES IN A FLOW

ASSUMPTIONS :

- DILUTE SUSPENSION OF NEUTRALLY-BUOYANT MICRO-ORGANISMS
- SUB-KOLMOGOROV SIZE

 $=\frac{\mathbf{1}}{2B}[\mathbf{k}-(\mathbf{k}\cdot\mathbf{p})\mathbf{p}]+\frac{\mathbf{1}}{2}\omega\times\mathbf{p}$

- NEGLIGIBLE INERTIA
- SWIMMING AT CONSTANT SPEED V_s IN THE DIRECTION **P**

$$\dot{\mathbf{X}} = \mathbf{u}(\mathbf{X}, t) + v_s \mathbf{p}$$

SWIMMING PROVIDES A WAY FOR MICRO-ORGANISMS TO ESCAPE FLUID PATHLINES (KESSLR J.O., NATURE, 1985)

Reorentation term due to gravitational torque

Vorticity term

MODELLING MICRO-SWIMMERS

TWO CONTROLLING PARAMETERS:

$$V_s \simeq 10 - 1000 \mu m/s \longrightarrow \Phi = v_s/u_\tau$$
$$B \simeq 0.1 - 10s \longrightarrow \Psi = \frac{1}{2B} \frac{\nu}{u_\tau^2}$$

VALUES CONSIDERED IN OUR STUDY:

 $\Phi = 0.048$ DIMENSIONLESS SWIMMING SPEED $\Psi_L=0.0113$ low gyrotaxis (slow re-orient.) $\Psi_I = 0.113$ **INTERMEDIATE GYROTAXIS** $\Psi_{H} = 1.13$

HIGH GYROTAXIS (FAST RE-ORIENT.)

CHLAMYDOMONAS AUGUSTAE

EFFECT OF WIND-SHEARED SURFACE

TURBULENCE ON SWIMMER DYNAMICS

EFFECT OF WIND-SHEARED SURFACE

TURBULENCE ON SWIMMER DYNAMICS

SWIMMER DISTRIBUTION AT THE FREE-SURFACE FOR Re_{τ} =171 (Ψ_{H} , HIGH GYROTAXIS CASE)

> X

WIND OPPOSITE TO MEAN FLOW

WIND ALONG THE MEAN FLOW

ORIENTATION AND VERTICAL DISTRIBUTION (Ψ_{I} , INTERMEDIATE GYROTAXIS CASE)

EFFECT OF WIND-SHEARED SURFACE

TURBULENCE ON SWIMMER DYNAMICS

$$u = (0, \Gamma z, 0)$$

$$\omega = (-\Gamma, 0, 0)$$

$$\dot{p}_x = -\frac{1}{2B}p_x p_z$$

$$\dot{p}_y = -\frac{1}{2B}p_y p_z + \frac{\Gamma}{2}p_z$$

$$\dot{p}_z = \frac{1}{2B}(1 - p_z^2) - \frac{\Gamma}{2}p_y$$
if BΓ<1
$$p^{eq} = (0, B\Gamma, \sqrt{1 - (B\Gamma)^2})$$
else
tumblina: no equilibrium

IN AGREEMENT WITH DURHAM ET AL., SCIENCE (2009): SHEAR CAN INDUCE GYROTACTIC TRAPPING!

THANK YOU FOR YOUR KIND ATTENTION!