

3D-CFD-Simulations of the gas-particle flow in a cold gas Laval nozzle to predict the mechanical erosion

14th Workshop on Two-Phase Flow Predictions 07. – 10. September 2015

¹<u>Matthias Neben</u>, ¹Christoph Egbers, ²Sven Wenzke

¹ Department of Aerodynamics and Fluid Mechanics

Brandenburg University of Technology Cottbus-Senftenberg

² HKW Heizkraftwerksgesellschaft Cottbus mbH

Contents

Introduction

- 3D CFD of multiphase flows in power plants at CHP Cottbus as an example
- Motivation
- State of the art
- Dominant wear mechanisms
- Numerical methods
- Numerical set-up
- Results
- Outlook

3D CFD of multiphase flows in power plants at CHP Cottbus as an example

3D CFD of multiphase flows in power plants at CHP Cottbus as an example

- Prediction of the two-phase flow in the standpipe
- Non homogeneous mass fluxes at the outlets
- Euler/Euler method

3D CFD of multiphase flows in power plants at CHP Cottbus as an example

Numerical simulations in cooperation with the Cottbus power plant

Euler/Lagrange simulation at a T-piece

$$\overline{v}_{\infty} = 42 \text{ m/s}$$

Numerical simulations in cooperation with the Cottbus power plant

Time averaged:

Motivation

Nomenclature

b-tu Brandenburgische Technische Universität Cottbus - Senftenberg

Added mass force	\vec{F}_{AM}	Volume fraction	
Density	ρ	of the particle phase	$\alpha_{\rm p} = \frac{V_{\rm p}}{V}$
Diameter	d	Bulk density	$\rho_b = \alpha_p \cdot \rho_p$
Diffusive flux of heat	Ĵ	Mach number	$Ma = \frac{ \nabla }{ \nabla }$
Drag Force	\vec{F}_{D}		c mp
Dynamic viscosity	μ	Mass Ioad	$\mu = \frac{1}{m_c}$
Mass	m	Particle response time	$\tau_{\rm p} = \frac{\rho_{\rm p} d_{\rm p}^2}{10 \text{ fm}}$
Momentum source			r 18μf _D
due to particle forces	Ŝ	Reynolds number	$Re = \frac{\mu}{\mu}$
Pressure	р	Stokes number	$St = \frac{\tau_p \nabla }{T}$
Pressure gradient force	\vec{F}_{PG}		d
Speed of sound	C	Subscript	
Temperature	Т		
Volume	V	Inlet condition	$\mathbf{\omega}$
Velocity	\vec{V}	Particle phase	n
Viscous stress Tensor	Т	Continuous phase	С К
Work due to particle forces	W		0

Verevkin, Tsirkunov. 2008. Flow of a dispersed phase in the Laval nozzle and in the test section of a two-10

Lu et al. 2011. Flow characteristics and pressure drop across the Laval nozzle in dense phase pneumatic conveying of the pulverized coal. Chemical Engineering and Processing, 50

 \rightarrow Large particle concentrates around centerline Particle free zone

- Num: Verevkin, Tsirkunov. 2008
 - Increasing Stokes number \rightarrow higher particle inertia
 - Separation from streamlines \rightarrow Particle free zone

 \rightarrow Number of colliding particles increases

flow rate and pressure disturbances

 \rightarrow Higher momentum of impacting particles

phase hypersonic shock tunnel. Journal of Applied Mechanics and Technical Physics, 49

 \rightarrow made it easier to control coal mass flow rate precisely

- - Exp: Lu et al. 2011

showed that the flow through a Laval nozzle is less sensitive to the gas

Particle tracking in a Laval nozzle

State of the art

State of the art

Erosion due to particles impacts in a Laval nozzle

- Num: Thakre. 2008
 - Mechanical erosion caused by the impingement of particles is negligible in the throat region, it is not significant to total mass loss
- Num: Thakre et al. 2013
 - Mechanical erosion is prevalent only in the convergent section of the rocket

Thakre. 2008. Chemical erosion of graphite and refractory metal nozzles and its migation in solid-propellant rocket motor. Thesis

Thakre et al. 2013. *Mechanical erosion of graphite nozzle in solid-propellant rocket motor.* Journal of Propulsion and Power, 29

State of the art

Brandenburgische Technische Universität Cottbus - Senftenberg

Optimized shape

• Num: Hennessey. 2001

 \rightarrow Flow predictions of Laval nozzles are usually performed for rocket nozzles

- Different conditions like temperatures up to 3000 K
- Reacting and/or melting particles
- Main erosion in these cases is due to chemical erosion and melting surfaces whereas mechanical erosion is neglected
- Furthermore the lifetime of such nozzles is in the order of minutes compared to thousands of hours in our case.

Hennessey. 2001. *Erosion resistant rocket nozzle*, US Patent 6330793

Dominant wear mechanisms

Depends on material:

- ductile cutting and plastic deformation
- brittle fracture

Numerical methods

- Open source software package OpenFOAM
- Density based compressible solver rhoCentralFoam

 \sim

- does not involve Riemann solver
- based on central-upwind schemes

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0$$

$$\neq$$
 0 for 2/4-way-coupling

$$\frac{\partial(\rho \vec{u})}{\partial t} + \nabla \cdot \left[\vec{u} (\rho \vec{u})^T \right] + \nabla \mathbf{p} + \nabla \cdot T = \vec{S}$$

$$\frac{\partial(\rho E)}{\partial t} + \nabla \cdot [\vec{u}(\rho E)] + \nabla \cdot (p\vec{u}) + \nabla \cdot (T \cdot \vec{u}) + \nabla \cdot \vec{j} = W$$

Weller et al. 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in Physics, 12 Greenshields et al. 2009. Implementation of semi-discrete, non-staggered central schemes in a colocated, polyhedral, finite volume framework, for high-speed viscous flows. Int. J. Numer. Meth. Fluids Marcantoni et al. 2012. High speed flow simulations using OpenFOAM. Mecánica Computacional, 2012

Numerical methods

- Combination of the compressible solver with particle methods supplied by OpenFOAM → Euler/Lagrangian coupling
- Equation of motion $m_p \frac{d \vec{v}_p}{dt} = \vec{F}_D + \vec{F}_{PG} + \vec{F}_{AM}$
- Drag force by Henderson, takes high Mach number into account
- Stochastic Particle-Wall collisions

Erosion modeling by Tabakoff

Sommerfeld, Huber. 1999. *Experimental analysis and modelling of particle-wall collision*. International Journal of Multiphase Flow, 25 Henderson. 1976. Drag coefficients of spheres in continuum and rarefied flows. AIAA Journal, 14 Grant, Tabakoff. 1975. *Erosion prediction in turbomachinery resulting from environmental solid particles*. J. Aircraft, 12 Oka et al. 2005. *Practical estimation of erosion damage caused by solid particle impact part 1*&2. Wear, 259

15

Brandenburgische Technische Universität

Numerical set-up

- 72716 cells
- Time step according to CFL < 0.25
- SST k- ω turbulence model
- Re_∞~300,000

- $\mu = 0.3$
- $d_p = 1,10,100 \ \mu m$
- $\rho_p = 2500 \text{ kg/m}^3$
- 1e7 parcels per second, 220,000 at once
- 1 way coupling

Results/Qualitive comparison

Brandenburgische Technische Universität Cottbus - Senftenberg b-tu 100 µm, St = 97 $\alpha_p / \alpha_{p\infty}$ 10 µm, St = 3 - α_p / α_{p∞} 0.035 0.01 0.02 0.025 - op/opx 1 μm, St = 0.05 0.015 0.02 0.025 0.03 0.035

Results/Qualitive comparison

- It could be observed that particles with St > 1 strongly tended to collide with the nozzle wall
- Erosion mainly due to the largest particles
- Erosion located in a small area in front of the throat
- Qualitatively comparable with numerical and experimental research of two phase flow Laval nozzles

Outlook

Brandenburgische Technische Universität Cottbus - Senftenberg

- Two-way and four-way coupling is necessary to achieve more accurate results
- particle-particle collisions will be modeled by the stochastic method of O'Rourke
- Modification of the Navier-Stokes equation which takes dispersed phase volume fraction into account
- Verification:
 - Quantitive comparison with pressure drop according to Lu et al. 2011
 - Comparison of the predicted erosion with Thakre et al. 2013
- Variation of geometry, material and mass load

Amsden et al. 1989. KIVA-II: A computer program for chemically reactive flows with sprays.

Thank you for your attention.