

Towards Simulation-based Engineering of Fibre Fractionation Equipment Separation Effects and Orientation Statistics of Fibres in Coiled-Pipe Suspension Flow

Jakob D. Redlinger-Pohn, and Stefan Radl Institute of Process- and Particle Engineering, Graz University of Technology

Motivation – The Tube Flow Fractionator

Fibre suspension flow in coiled tubes is common process in any paper mill. From experimental studies with a coiled tube it is known that

- ✓ **fibres segregate** according to their length [1,2].
- ✓ However, the segregation mechanism is not understood.
- Currently: black-box model [1]
- ✓ Current hypothesis: "turbulent fluctuations" cause separation.

[1] O. Laitinen, BioResources 6 (2011) 672-685[2] L. Jagiello, TU Graz, 2013

Sketched separation mechanismn [1]

Agenda

- (1) Motivation
- (2) Code and Modeling Approach
- (3) CFD Simulation
- (4) CFDEM® Simulation
- (5) Experiment
- (6) Conclusion

IPPT FLIPPR team

Code and Modeling Approach

Two phase fibre-fluid simulation with **LIGGGHTS® and CFDEM®** (DCS Computing, Linz, Austria)

- Implicit fibre-fluid drag and torque interaction
- One-way coupling of fibres to the fluid (Stokes drag and buoyancy force)

- Fibre-Wall interactions (wallnormal interaction, Hook stiffness)
- Surface roughness effects

Code and Modeling Approach

Fibre-wall contact detection realized by **line-segment** interaction [3]

Line intersecting with a triangle

[3] P.J. Schneider, D.H. Eberly, Elsevier, 2003

Fibre-wall impact for different impact angles **validated** against **analytical solution** [4]

Rotational and translational rebound velocity

[4] M.Kodam, et.al., Chem.Eng.Sci., 2010

CFD – Simulation of Toroidal Flow

Simulation of toroidal flow was guided by recent published literature [5-7]:

- DNS of fluid flow
- Cross sectional mesh: blocked and radially clustered using Cubit
- Toroidal tube **extruded** from cross sectional mesh yielding a half torus at curvatures κ of 0.043 and 0.1

[5] Piazza and Ciofalo, Int. J. Therm. Sc. 49 (2010) 653-663
[6] Piazza and Ciofalo, J. Fluid. Mech. 687 (2011) 72-117
[7] Hüttl and Friedrich, Computers & Fluids 30 (2001) 591-605

CFD – Simulation of Toroidal Flow

Fibre **cross-sectional position** at t = 178.6

Residence time distribution of fibres with different size

Experiment – TFF Mass Balance

Experimental Set-Up according to **Tube Flow Fractionator** described by Laitinen [1] implemented at the Institute of Paper-, Pulp- and Fibre Technology [2]

TFF key element

Fractionation pipe
 L 100 m
 d_i 0.016 m

Materials

Monosized synthetic cellulose fibres

[1] O. Laitinen, BioResources 6 (2011) 672-685[2] L. Jagiello, TU Graz, 2013

Experiment – TFF Mass Balance

Mass balance experiments at different concentrations:

- Fibre network regime (0.1%)
- Individual fibre regime
 (0.03%)
 73%

Collection of fibres until $\tau = 1$ and gravimetric determination of the collected mass

TFF key element

Fractionation pipe
 L 100 m
 d_i 0.016 m

Materials

 Monosized synthetic cellulose fibres

76%

Conclusion

- ✓ CFDEM[®] simulation of dilute fibre suspension
- ✓ Different fibre sizes realized
- ✓ Fibre position, fibre orientation, and fibre movement analyzed
- Ratio of sedimentation velocity to secondary motion is key for the fractionation effect

- ✓ Experiments performed with synthetic cellulose fibres
- ✓ Results for dilute fibre systems are in agreement with the simulation results
- ✓ Fibre network might affect the fractionation process

mondĭ

PROJECT MEMBERS

Industrial partners:

Scientific Partners:

Universität für Bodenkultur Wien University of Natural Resources and Life Sciences, Vienna

sappi

FUNDING PARTNERS

The K-Project Flippr ° is within the scope of COMET - Competence Centers for Excellent Technologies sponsored by BMVIT, BMWFJ, Province of Styria and Carinthia. The COMET program is managed by FFG

KWI

Economic Affairs and Innovation

Kärntner

Fonds

Wirtschaftsförderungs

Competence Centers for Excellent Technologies

Federal Ministry of Economy, Family and Youth

bm

Federal Ministry for Transport, Innovation and Technology

->

Towards Simulation-based Engineering of Fibre Fractionation Equipment Separation Effects and Orientation Statistics of Fibres in Coiled-Pipe Suspension Flow

Jakob D. Redlinger-Pohn, and Stefan Radl Institute of Process- and Particle Engineering, Graz University of Technology

