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Overview

• Motivation and Goal

• Baseline Model for Fluid Dynamics

• Including Mass Transfer

• Summary and Outlook
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Two different perspectives on multiphase flow

� Averaging �

eliminiates small scales

thus

lower resolution suffices

but

closure models required

Interface Dynamics:

at each position

either gas or liquid

Two Fluid Model:

both gas and liquid everywhere

with certain probability
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Motivation & Goal

• Simulation on industrial scale is feasible with Two-Fluid-Model

but needs development of closure relations.

• To predict phenomena for a certain range of conditions

models must work without adjustments.

• Same closures should work for all systems

with same physics at the bubble scale.

• Baseline model provides starting point

further development expands range of applicability and accuracy.
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Closure is a very complex problem

bubble forces

bubble-induced

turbulence

bubble 

coalescence 

& breakup

bubble 

size

effective 

viscosity

rates

… without claiming completeness

bubble size

bubble 

distribution

& velocitybubble 

distribution

& velocity
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Bubble Forces

• drag [1979_Ishii]

• (shear) lift [2002_Tomiyama]

• wall (lift) [2002_Hosokawa]

• turbulent dispersion [2004_Burns]

• virtual mass CVM = 1/2

• largely based on experiments 
with single bubbles in laminar flows
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Turbulence

• liquid phase only

– shear-induced � SST model like for single phase flow

– bubble-induced � source terms for k and ε / ω

• k-source: power transferred to liquid by drag

• ε-source: dimensional argument similar to single phase case

• τ and CεB from trial and error

• no extra contribution needed in effective viscosity
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Pipe flow [1998_Liu]

• stationary simulation 
of narrow pipe sector
valid for axisymmetric flow

• assuming monodisperse 
bubble size distribution 
taken from measurements

• fully developed conditions
at measurement level

• uniform gas profile at inlet

• air bubbles in water (P = 1bar)
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Results

• void fraction: good in center, wall peak too high

• liquid velocity: quantitative deviations small, but too steep near wall

• turbulent energy: too high in center, too low near wall

• exception: double peaked profile
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Bubble Column [2012_Akbar]

• 3D transient simulation (URANS)

• with fixed polydispersity
taken from measurements

• 1 or 2 MUSIG groups

• individual nozzles at inlet

• air bubbles in water (P = 1bar)
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Results

• void fraction: quantitative deviations small, but too peaked near wall

• liquid velocity: zero-crossing at different position, dip in center

• turbulent energy: 

– too low on average, peak near wall missed

– modeled contribution dominant
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Processes involved in reactive mass transfer

gas boundary bulk liquid

bubble layer with turbulent eddies

mass

transfer

turbulent

diffusion

micro-mixing

slow

reaction

reactand A

reactand B

fast

reaction
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Mass Transfer Coefficient

• penetration / renewal model

• good for thin concentration boundary layer

• transient diffusion in plane geometry

• time-averaged mass transfer coefficient

• big question: What is the contact time τ
c

?

• three answers:

( ) 2/112 −∝ cLL Dk τ
π

gas        liquid

laminar model

[1935_Higbie]
large eddy model

[1967_Fortescue]
small eddy model

[1970_Lamont]
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downward vertical flow

dB ≈ 0.5 … 5 mm

urel ≈ 0.25 m/s

ReH ≈ 2500

Mass Transfer Coefficient

• Which answer is correct ?

• qualitative evidence

• laminar model: numerous investigations on 

– bubbles rising in quiescent flow

• eddy models: situations where

– urel is 0 like in horizontal bubbly flow

– dB tends to ∞ like in open channel flow

• quantitative analysis of available data

• laminar model:

– still good for moderate trubulence

• eddy models:

– favor large over small eddy model

• combined model:

– tentatively add inverse contact times

56.0...47.0Re∝

46.0Re∝
69.0Re∝

0Re∝

0

BRe∝

5.0−∝ BRe

43.0−∝ BRe

[1970_Lamont]

pipe flow

dB ~ 4.5 … 11 mm



Page 15

Mass Transfer Coefficient

• needs for better understanding!

• laminar model:

• include effects of bubble shape, path, oscillation, wake

• turbulent models:

• consider spectrum of eddies

• needs good model for bubble induced turbulence

• unite both mechanisms
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Euler-Euler Simulations with Mass Transfer

• literature: validation only by integral quantities, 
e.g. integral kLa-value total gas holdup

• needed: validation using local information, 
e.g. axial profiles of gas fraction and concentration

• [1978_Deckwer]: 
cocurrent absorption
of CO2 from air bubbles into water
in a bubble column

• peculiar: mean bubble size does not change
� bypass modeling of bubble coalescence and breakup
� use constant kL obtained from the data

dB, kL
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Results
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Results
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Results

0.15m

0.14m

liquid inlet
14% of total area

gas inlet
86% of total area

z / hz ~ 0.1
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With Variable Bubble Size

• inspired by [1978_Deckwer] 

• mass transfer coefficient due to Brauer

• fixed bubble size with dB = 3 mm and 2 mm 

• variable bubble size by MUSIG model

• awaiting data for validation from partners in SPP 1740
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Summary

established

• baseline approach works for fluid dynamics with fixed polydispersity

• rough quantitative agreement in certain parameter range

• some open issues remain, e.g. suitable inlet modeling

• initial validation for extension to mass-transfer

• model development in progress

ongoing and future work

• promising candidate for bubble coalescence and breakup

• include more complex physics: chemical reaction

• extend to more complex systems: add particles
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