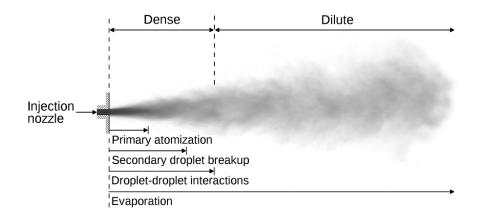
# Direct Quadrature-based Sectional Method of Moments coupled to realistic evaporation models




TECHNISCHE UNIVERSITÄT DARMSTADT

Advanced Hybrid Model for Simulating Complex Polydisperse Sprays

# Spray application





9. September 2015 | Department of Energy and Power Plant Technology | Benjamin Synek | 2

# Simulation emphasis



#### Major foci

- Atomization of liquid fuel
- Momentum transfer between phases
- Droplet-droplet-/-turbulence interaction
- Heat and mass transfer
- Chemical reactions

#### Major challenges

- Small time and size scales
- Large amount of droplets
- Varying spray regime
- Major aspects
  - Practicable for industrial applications
  - Simulation on a microscopic level is prohibitive
  - Modeling is based on a statistical level of description



1 Spray modeling



- 1 Spray modeling
- 2 Method of Moments
  - DQbSMoM
  - Operator splitting



- 1 Spray modeling
- 2 Method of Moments
  - DQbSMoM
  - Operator splitting
- 3 Evaporation modeling
  - Equilibrium and non-equilibrium formulation
  - Models under investigation



- 1 Spray modeling
- 2 Method of Moments
  - DQbSMoM
  - Operator splitting

- Equilibrium and non-equilibrium formulation
- Models under investigation
- 4 Spray simulation
  - Experimental and numerical configuration
  - Results



- 1 Spray modeling
- 2 Method of Moments
  - DQbSMoM
  - Operator splitting

- Equilibrium and non-equilibrium formulation
- Models under investigation
- 4 Spray simulation
  - Experimental and numerical configuration
  - Results
- 5 Summary and outlook



#### Spray modeling

- 2 Method of Moments
  - DQbSMoM
  - Operator splitting

- Equilibrium and non-equilibrium formulation
- Models under investigation
- 4 Spray simulation
  - Experimental and numerical configuration
  - Results
- 5 Summary and outlook

# Spray modeling principles



**E** Kinetic spray equation of distribution function  $f(\mathbf{x}, t; \mathbf{u}, \phi, T)$ 

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial x_i} \left( u_i f \right) + \frac{\partial}{\partial u_i} \left( F_i f \right) + \frac{\partial}{\partial \phi} \left( R_{\phi} f \right) + \frac{\partial}{\partial T} \left( \theta f \right) = \Gamma$$
(1)

- Physical aspects
  - $\begin{array}{ll} \frac{\partial f}{\partial t} & \text{Transient term} & \frac{\partial}{\partial x_i} \left( u_i f \right) & \text{Convective term} \\ \frac{\partial}{\partial u_i} \left( F_i f \right) & \text{Momentum transfer} & \frac{\partial}{\partial \phi} \left( R_{\phi} f \right) & \text{Mass transfer} \\ \frac{\partial}{\partial T} \left( \theta f \right) & \text{Heat transfer} & \Gamma & \text{Droplet-droplet interaction} \end{array}$

Solving approaches

| DNS                   | LES               | RANS                    |  |  |
|-----------------------|-------------------|-------------------------|--|--|
| Stochastic Lagrangiar | n methods Eule    | Eulerian moment methods |  |  |
| Microscopic models    | Mesoscopic models | Macroscopic models      |  |  |

# Lagrangian and Eulerian methods



#### TECHNISCHE UNIVERSITÄT DARMSTADT

#### Stochastic Lagrangian Methods

- Robust, accurate and well established
- RANS/LES simulations with lower parallelization of solver
- Requiring sufficient amount of parcels to avoid statistical noise
- High computational cost for highly unsteady simulations with fine mesh
- Hardly achievable optimal parallelization

Tendency: LES and highly parallelized simulations

#### Eulerian Moment Methods

- Equations of both phases share same structure
- Straightforward phase coupling
- Achievable optimal parallelization
- Under research and majorly used for academic applications
- Variety of approaches

Tendency: Growing awareness and interest



#### 1 Spray modeling

#### 2 Method of Moments

- DQbSMoM
- Operator splitting

#### 3 Evaporation modeling

- Equilibrium and non-equilibrium formulation
- Models under investigation

#### 4 Spray simulation

- Experimental and numerical configuration
- Results

#### 5 Summary and outlook

# **Assumptions of MoM**



Approximation of NDF by weighted Dirac-delta functions

$$f(\mathbf{x}, t; \mathbf{u}, \phi, T) \approx \sum_{n=1}^{N} w_n \,\delta(\phi - \phi(\mathbf{x}, t)) \,\delta(\mathbf{u} - \mathbf{u}_n(\mathbf{x}, t)) \,\delta(T - T_n(\mathbf{x}, t))$$
(2)

Calculation of moments

$$m_{qlmp\theta}(\mathbf{x}, t; \mathbf{u}, \phi, T) = \sum_{n=1}^{N} w_n \phi_n^q u_{1,n}^l u_{2,n}^m u_{3,n}^p T_n^\theta$$
(3)

Moments of diameter (q = d)

| $m_{\rm d}^0$ | amount of droplets | $m_{\rm d}^1$ | $\sim$ mean diameter |
|---------------|--------------------|---------------|----------------------|
| $m_{\rm d}^2$ | $\sim$ surface     | $m_{\rm d}^3$ | $\sim$ volume/mass   |

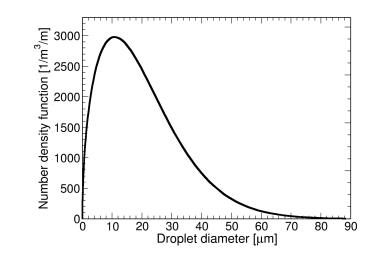
### Assumptions of DQbSMoM



Splitting of  $f(\mathbf{x}, t; \mathbf{u}, \phi, T)$  into k sections

$$f(\mathbf{x}, t; \mathbf{u}, \phi, T) = \sum_{k=1}^{N_{s}} f_{k}(\mathbf{x}, t; \mathbf{u}, \phi, T)$$
(4)

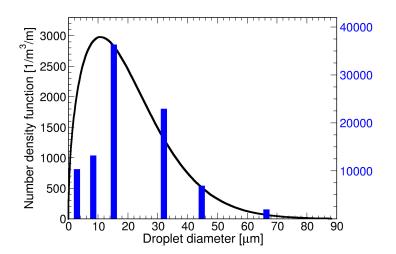
Utilization of indicator function


$$f_{k}(\mathbf{x}, t; \mathbf{u}, \phi, T) = \begin{cases} f_{k}(\mathbf{x}, t; \mathbf{u}, \phi, T) &, \text{ if } \phi \in [\phi_{k-1}, \phi_{k}) \\ 0 &, \text{ otherwise} \end{cases}$$
(5)

Approximation of NDF over each section k

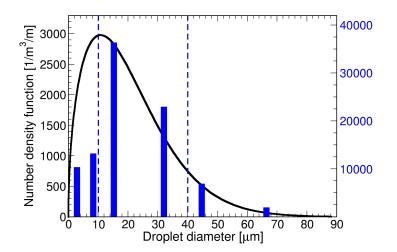
$$f_{k}(\mathbf{x}; t, \mathbf{u}, \phi, T) \approx \sum_{n=1}^{N} w_{k,n} \,\delta\big(d - d_{k,n}\big) \,\delta\big(\mathbf{u} - \mathbf{u}_{k,n}\big) \,\delta\big(T - T_{k,n}\big) \tag{6}$$

#### Concept of the DQbSMoM






9. September 2015 | Department of Energy and Power Plant Technology | Benjamin Synek | 11


### Concept of the DQbSMoM





### Concept of the DQbSMoM





### **Closure strategy**



#### General approach

- Insertion of Dirac-delta approximation
- Application of moment transform
- Choice of 6 · N indepent, non-singular moments
- Linear system is solved using modified standard DQMoM
- Standard DQMoM approach
  - Outcome is a set of 4 Eulerian transport equations
  - Consideration of physical phenomena by source terms on RHS
- DQbSMoM approach
  - Application of operator splitting strategy
  - Separate handling of terms on LHS
- Framework for this method
  - Based on incompressible Finite Volume Method
  - Implicit time discretisation

# **Operator splitting**



Splitting Eq. (1) according to  $\frac{\partial f}{\partial t}$  =

| Physical space                                                                   | Phase space                                                                                                          |                       |  |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| Multi-fluid method                                                               | EMSM and SM                                                                                                          | Coalescence algorithm |  |
| $-\frac{\partial}{\partial x_i} (u_i f) - \frac{\partial}{\partial u_i} (F_i f)$ | $-rac{\partial}{\partial\phi}\left(\pmb{R}_{\phi}\pmb{f} ight)-rac{\partial}{\partial	au}\left(	heta\pmb{f} ight)$ | Г                     |  |

#### Two-step splitting strategy

- Phase space transport during <sup>Δ</sup>t/<sub>2</sub>
- Physical space transport during  $\Delta t$
- Phase space transport during △t/2
- Solving approaches
  - EMSM/SM is consistent with evaporation models
  - Coalescence is neglected ( $\Gamma = 0$ )
  - Formulation is equivalent to splitting of source terms

# Coupling with multi-fluid method



#### Basics of coupling approach

- Inserting volume fraction results in multi-fluid system
- RHS includes drag term, turbulence diffusion and gravity effects
- Equivalent to multi-fluid system with N<sub>s</sub> · N phases
- Straightforward coupling, because equations share same structure

#### Fundamental assumptions

- Based on density based averaging strategy
- Modeling approaches are needed for closure
- Turbulence of disperse phase is derived by gas phase
- Characteristics of the coupling approach
  - Consideration of  $\phi = v$
  - Additional transport equations for diameter and temperature abscissae
  - Mono-kinetic assumption

# EMSM/SM in consistency with evaporation



#### Features of EMSM/SM

- Prediction of flux of evaporating droplets at zero size
- $\blacksquare$  Prediction of moment flux  $\psi$  at section boundaries
- Consideration of  $\phi = s$

#### Calculation algorithm

- Approximate NDF and calculate moment vector M<sub>φk</sub>
- Calculate moment fluxes  $\psi$  at each section boundary
- Modify moment vector and calculate quadrature points

$$M^*_{\phi_k} = M_{\phi_k} - \psi_{k-1} + \psi_k$$

Shift NDF using general DQMOM approach

$$\phi_{k,n}(t + \Delta t) = R_{\phi}\Delta t + \phi_{k,n}(t)$$
$$T_{k,n}(t + \Delta t) = \theta\Delta t + T_{k,n}(t)$$

Calculate change of vapor mass fraction



- 1 Spray modeling
- 2 Method of Moments
  - DQbSMoM
  - Operator splitting

- Equilibrium and non-equilibrium formulation
- Models under investigation
- 4 Spray simulation
  - Experimental and numerical configuration
  - Results
- 5 Summary and outlook

# Equilibrium and non-equilibrium formulation



Equilibrium formulation of vapor mole at droplets' surface

$$X_{\rm s(eq)} = \frac{p_{\rm sat}}{p_{\rm g}} = \frac{p_{\rm atm}}{p_{\rm g}} \exp\left(\frac{h_{\rm vap}W_{\rm d}}{R}\left(\frac{1}{T_{\rm boil}} - \frac{1}{T_{\rm d}}\right)\right)$$
(7)

Non-equilibrium formulation

$$X_{\rm s(neq)} = X_{\rm s(eq)} - \left(\frac{2L_{\rm k}}{d}\right)\beta$$
 (8)

$$L_{\rm k} = \frac{\mu_{\rm g} \sqrt{2\pi T_{\rm d} R/w_{\rm d}}}{\alpha_e \, \mathcal{S}c_{\rm g} \, \rho_{\rm g}} \qquad \beta = -\left(\frac{3 \, \Pr_{\rm g} \, \tau_{\rm d}}{2}\right) \frac{\dot{m}_{\rm d}}{m_{\rm d}}$$

- Advantages of non-equilibrium evaporation models
  - High temperature difference
  - Minor droplet diameter
  - High relative velocity

# Models under investigation



- Equilibrium model by Abramzon and Sirignano (1989)
- Non-equibrium model by Langmuir and Knudsen (1978)
- Evaporation rate and transient droplet temperature

$$\frac{\mathrm{d}m_{\mathrm{d}}}{\mathrm{d}t} = -\frac{Sh}{3\,Sc_{\mathrm{g}}} \left(\frac{m_{\mathrm{d}}}{\tau_{\mathrm{d}}}\right) H_{\mathrm{M}} \tag{9}$$

$$\frac{\mathrm{d}T_{\mathrm{d}}}{\mathrm{d}t} = -\frac{f_{\mathrm{d}}Nu}{3\,Pr_{\mathrm{g}}}\left(\frac{c_{\mathrm{p},\mathrm{g}}/c_{\mathrm{p},\mathrm{v}}}{\tau_{\mathrm{d}}}\right)\left(T_{\mathrm{g}}-T_{\mathrm{d}}\right) + \left(\frac{h_{\mathrm{vap}}}{c_{\mathrm{p},\mathrm{d}}}\right)\frac{\dot{m}_{\mathrm{d}}}{m_{\mathrm{d}}}$$
(10)

- Varying formulation for  $H_M$  and  $f_d$
- Sherwood and Nusselt number

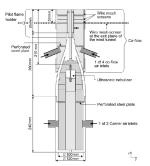
$$Sh = 2 + 0.522 Re_{d}^{\frac{1}{2}} Sc_{g}^{\frac{1}{3}} \qquad Nu = 2 + 0.522 Re_{d}^{\frac{1}{2}} Pr_{g}^{\frac{1}{3}}$$
(11)

Reference values  $T_{ref}$  and  $Y_{ref}$  according 1/3-rule



- 1 Spray modeling
- 2 Method of Moments
  - DQbSMoM
  - Operator splitting
- 3 Evaporation modeling
  - Equilibrium and non-equilibrium formulation
  - Models under investigation

#### 4 Spray simulation


- Experimental and numerical configuration
- Results

#### 5 Summary and outlook

# **Experimental configuration**



- Non-reacting acetone spray
- Jet surrounded by a pilot and a coflow
- T<sub>g</sub> =  $T_{\rm d}$  = 300 K,  $p_{\rm g}$  = 0.1 MPa
- Ultrasonic nebulizer for spray
- Usage of Laser Doppler Velocimetry and Phase Doppler Particle Anemometry
- 7 measurement positions above the nozzle exit (x/p = 0.3; ...; 30)

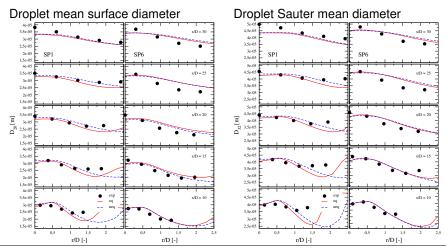


|     | <i>u</i> <sub>jet</sub> | Upilot, Ucoflow | $\dot{m}_{ m jet}$ | m <sub>d</sub> | <i>m</i> <sub>d(/)</sub> | $\dot{m}_{d(g)}$ | Re     |
|-----|-------------------------|-----------------|--------------------|----------------|--------------------------|------------------|--------|
|     | m/s                     |                 | 9/min              |                | 9/min  at  x/D = 0.3     |                  | -      |
| SP1 | 24.0                    | 4.5             | 150.0              | 75.0           | 22.1                     | 52.9             | 24,288 |
| SP6 | 36.0                    | 4.5             |                    |                |                          | 16.5             |        |

9. September 2015 | Department of Energy and Power Plant Technology | Benjamin Synek | 20

# Numerical configuration

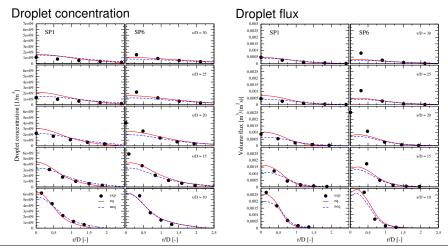



- Turbulence of gas phase is described with modified k-ε model
- Approx. lognormal size distribution
- slip wall condition for cylinders' surface
- Inlet is located at x/D = 0.3
- Smallest cells have a length of 0.5 mm
- 5 subiterations for evaporation model
- Polynomials for thermodynamic variables



|         | Radius | Hight | $\Delta t$        | CV number      | Points | Sections k |
|---------|--------|-------|-------------------|----------------|--------|------------|
|         | mm     | mm    | S                 | —              | -      | _          |
| SP1/SP6 | 50     | 500   | $1.5	imes10^{-5}$ | $\sim$ 350,000 | 6      | 3          |

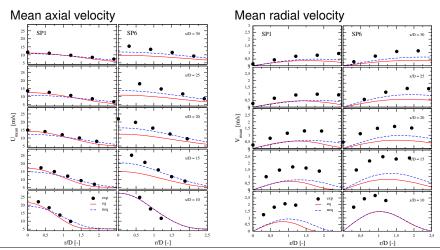
#### Results






9. September 2015 | Department of Energy and Power Plant Technology | Benjamin Synek | 22

#### Results






9. September 2015 | Department of Energy and Power Plant Technology | Benjamin Synek | 23

# Results





9. September 2015 | Department of Energy and Power Plant Technology | Benjamin Synek | 24



- 1 Spray modeling
- 2 Method of Moments
  - DQbSMoM
  - Operator splitting
- 3 Evaporation modeling
  - Equilibrium and non-equilibrium formulation
  - Models under investigation
- 4 Spray simulation
  - Experimental and numerical configuration
  - Results

#### 5 Summary and outlook

## Summary and outlook



#### Modeling approach

- Modeling multiphase flows
- Method of Moments
- Operator splitting approach
- Evaporation modeling
- Results for SP1 and SP6
  - Experimental and numerical configuration
  - Results for equilibrium and non-equilibrium model
- Coupling to a combustion model
  - Single droplet combustion experiments
  - Spray combustion experiments
- Improvements of turbulence modeling

# Direct Quadrature-based Sectional Method of Moments coupled to realistic evaporation models



TECHNISCHE UNIVERSITÄT DARMSTADT

Advanced Hybrid Model for Simulating Complex Polydisperse Sprays