Simulations of dispersed multiphase flow at the particle level

Jos Derksen

Chemical Engineering Delft University of Technology Netherlands

j.j.derksen@tudelft.nl http://homepage.tudelft.nl/s0j2f/

Multiphase flow

collective behavior \leftrightarrow particle-scale processes

sediment transport

bubbly flow

(Pickering) emulsion

predictive modeling & simulation

- flow dynamics
- mass transfer & mixing
- interface dynamics
- @ the particle scale ("meso-scale")

Macroscopic multiphase transport

$$\sim 30 \text{ cm}$$

$$\text{Re} = \frac{ND^2}{v} \approx 10^5$$

$$\text{TUDelft}$$

turbulent flow

"inertial" particles

wide spectrum of (length) scales particle size, tank size, turbulence scales

Ayranci et al CES 2012

Unresolved vs resolved particles

ŤUDelft

particle size > grid spacing no need for empiricism* up to 10⁴ particles

"multi-scale"

*fine print

Quick overview of numerics*

TUDelft

Lattice-Boltzmann method for solving the flow of interstitial fluid 3D, time-dependent

Explicitly resolve the solid-liquid interface: *immersed boundary method* particle size typically 12 grid-spacings

Solve equations of linear and rotational motion for each sphere

forces & torques: directly (and fully) coupled to hydrodynamics plus gravity

hard-sphere collisions or soft interactions (mostly for non-spherical particles)

*Derksen & Sundaresan, JFM 587 (2007)

TUDelft

Start-up of suspension process

Experimental validation

@ Institut de Mécanique des Fluides de Toulouse

refractive index matching for optical access

@ Beijing University of Chemical Technology[†]

[†]Mo et al AIChEJ 2015

*Duru, Guazelli *JFM* 2002 **Derksen, Sundaresan *JFM* 2007

More experimental validation

Becker Can. J. Chem. Eng 1959

Mass transfer

- start with zero concentration in the liquid
- apply a c=1 boundary condition at the particle surface
- solve a convection-diffusion equation in c

hydrodynamic resolution $2a=d_p=16\Delta$

Liquid systems: resolution is a **serious** concern given high Schmidt numbers

Coupled overlapping domains*

Communication between the grids:

- linear interpolation
- velocity on the spherical grid is imposed from the outer grid
- concentration fields are two-way coupled between the grids

^{...}mixing rules...

* Derksen AIChEJ 2014 ** Derksen CEJ 2014

Compare Sherwood numbers

Some more mass transfer

"industrial" applications

hot melt extrusion*

breakthrough in a micro reactor**

most of the yellow agent adsorbs on the particles

*Derksen et al ChERD 2015 **Derksen Micro Nano Fluidics 2014

Liquid-liquid dispersions (emulsions)

flow dynamics \leftrightarrow drop size distribution \leftrightarrow interfacial area \leftrightarrow inter-phase mass transfer \leftrightarrow apparent rheology \leftrightarrow stability \leftrightarrow product formulation

A methods slide: binary liquids

 ϕ : order parameter controls composition

advection-diffusion chemical potential $\frac{\partial \phi}{\partial t} + \nabla \cdot (\phi \vec{u}) = M \nabla^2 \mu \qquad \mu = \frac{\delta F}{\delta \phi} = A \phi (\phi^2 - 1) - \kappa \nabla^2 \phi$

coupled with hydrodynamics through body force $\vec{b} = -\phi \nabla \mu$

a "diffuse" interface

interface thickness

ζ

$$=\sqrt{2rac{\kappa}{A}}$$
 $\sigma =$

$$=\frac{2\sqrt{2}}{3}\sqrt{\kappa A}$$

proper interface is resolution: $\zeta \approx 1 - 2$

Briant, Yeomans Phys Rev E 2004

Make the flow simpler: breakup in shear

Komrakova et al IJMF 2014

Coalescence in shear

Theory, Experiments, and Motivation

simulations at critical conditions are challenging

- topological change; 30 nm film vs. 100 μ m drops

clean polymer systems

• hydrodynamics, surface tension, van der Waals forces

charged surfaces and electrolytes

additional electrostatic interactions

2R=227μm Chen et al. *Langmuir* 2009

We are (fairly) grid independent

Solid black: R = 75, $\zeta = 4$ Dashed red: R = 37.5, $\zeta = 2$

Doubling interface resolution does not change outcome.

 \therefore adequately resolved with $\zeta = 2$

....towards lower $\Delta Y/2R$ to compare with experiments

... need higher resolution

a good question would be: how big are these drops actually?

an estimate can be based on minimum film thickness minimum film thickness 5 – 10 l.u. ~ 30 nm $\Rightarrow R = 200: 0.6 - 1.2 \ \mu m$ drops

Sedimentation/fluidization

with an emphasis on non-spherical particles

"coker"

steel cubes in fluidization

sedimenting red blood

cells

*Richardson and Zaki Trans. Inst. Chem. Eng. 32 (1954)

RBC's as sample non-spherical particles

Specific challenges*

collision handling

repulsive spring force between surface points also used for immersed boundary

- low density ratio $\rho_{\rho}/\rho = 1.07$ use modified finite difference method for stability
- high solids volume fraction (~0.45)
 - compaction procedure for initialization
 - frequent collisions

TUDelft

MCCHARMANNER CHARMENNER

* Shardt & Derksen, IJ Multiphase Flow 47 (2012)

Settling of a dense suspension

all boundaries are periodic

291 particles $\phi = 0.35$

body force on fluid

balances gravity

resolution D = 20 nodes

removing particles reveals flow crosssection

Human erythrocyte sedimentation rate

U. Woermann

edu.cpln.ch/hemosurf/data/Lab-Images/all_ESRs.jpg

Typical human ESR is 3 – 9 mm/h

@ $\phi = 0.35$

Simulations: 0.18 mm/h

surface forces between RBCs and proteins in blood cause agglomeration

ESR blood tests

Acknowledgements

Collaborators & students

Gaopan Kong & Eric Climent in Toulouse

Junyan Mo, Zhipeng Li & Bruce Gao in Beijing

Alexandra Komrakova, Inci Áyranci, Suzanne Kresta, Orest Shardt & Jue Wang in Edmonton

Sankaran Sundaresan in Princeton

Sponsors

Schlumberger

Beyond continuum modeling

Liquid bridge (molecular) dynamics

